Morphometric analysis of epithelial cells of frog urinary bladder. I. Effect of antidiuretic hormone, calcium ionophore (A23187) and PGE2. 1987

A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio

Changes in epithelial cell morphology, especially at the apical plasma membrane, are frequently cited as initial evidence for antidiuretic hormone (ADH)-induced increase in membrane permeability. The effects of ADH and agents that alter and modify calcium and prostaglandin concentrations on the morphology and cytology of the epithelial cells of frog (Rana pipiens) urinary bladder are presented using the techniques of transmission and scanning electron microscopy. It was found that, like ADH, calcium ionophore, A23187, produce intense microvilli formation, microfilament mobilization and an increase in the density of granules and membrane associated vesicles, suggesting a prominent role of calcium in these processes. Moreover, our results suggest that these membrane and cytosolic transformations may be mediated in part through prostaglandin formation, as exogenous PGE2 mimicked these effects, and indomethacin, a prostaglandin synthesis inhibitor, attenuated ionophore's effect on luminal cytomorphology. However, unlike ADH, prostaglandins and ionophore inhibit hormonal-induced increase in transepithelial water flow. These results suggest that other components more distal to the luminal membrane, perhaps the basolateral membrane, may be rate-limiting for transepithelial water flow and possibly are regulated by either changes in calcium concentrations or prostaglandins.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms

Related Publications

A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
January 1983, Tissue & cell,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
August 1982, Tsitologiia,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
March 1983, Biochemical pharmacology,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
August 1979, Pflugers Archiv : European journal of physiology,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
January 1974, Experimental cell research,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
May 1984, Bollettino della Societa italiana di biologia sperimentale,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
January 1982, Cell and tissue research,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
December 1980, Pflugers Archiv : European journal of physiology,
A J Mia, and L X Oakford, and L Torres, and C Herman, and T Yorio
November 1976, The Journal of membrane biology,
Copied contents to your clipboard!