Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient. 2019

Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
Département d'obstétrique, Gynécologie et Reproduction, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Québec, Canada.

In the context of artificial insemination, male fertility is defined as the ability to produce functional spermatozoa able to withstand cryopreservation. We hypothesized that interindividual variations in fertility depend on the proportion of the fully functional sperm population contained in the insemination dose. The objective of this study was to identify protein markers of the fully functional sperm subpopulation. Insemination doses from four high-fertility (HF) and four low-fertility (LF) bulls with comparable post-thaw quality parameters were selected for proteomic analysis using iTRAQ technology. Thawed semen was centrifuged through a Percoll gradient to segregate the motile (high density [HD]) from the immotile (low density [LD]) sperm populations. Sperm proteins were extracted with sodium deoxycholate and four groups were compared: LD and HD spermatozoa from LF and HF bulls. A total of 498 unique proteins were identified and quantified. Comparison of HD spermatozoa from HF and LF bulls revealed that five proteins were significantly more abundant in the HF group (AK8, TPI1, TSPAN8, OAT, and DBIL5) whereas five proteins were more abundant in the LF group (RGS22, ATP5J, CLU, LOC616319, and CCT5). Comparison of LD spermatozoa from HF and LF bulls revealed that four proteins were significantly more abundant in the HF group (IL4I1, CYLC2, OAT, and ARMC3) whereas 15 proteins were significantly more abundant in the LF group (HADHA, HSP90AA1, DNASE1L3, SLC25A20, GPX5, TCP1, HIP1, CLU, G5E622, LOC616319, HSPA2, NUP155, DPY19L2, SPERT, and SERPINE2). DBIL5, TSPAN8, and TPI1 showed potential as putative markers of the fully functional sperm subpopulation.

UI MeSH Term Description Entries
D008297 Male Males
D011205 Povidone A polyvinyl polymer of variable molecular weight; used as suspending and dispersing agent and vehicle for pharmaceuticals; also used as blood volume expander. Polvidone,Polyvidon,Polyvinylpyrrolidone,Arufil,Bolinan,Bolinan 40,Crospovidone,Dulcilarmes,Duratears Free,Enterodes,Enterodez,Hypotears,Kollidon,Lacophtal,Lacri-Stulln,Lagrifilm,Liquifilm Lagrimas,Nutrivisc,Oculotect,PVP 40,Periston,Plasdone,Polyplasdone XL,Povidone, Unspecified,Protagens,Protagent,Unifluid,Vidirakt S mit PVP,Vidisic PVP Ophtiole,Wet-Comod,Dulcilarme,Enterode,Hypotear,Polyvidons,Protagen,Unspecified Povidone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002500 Centrifugation, Isopycnic A technique used to separate particles according to their densities in a continuous density gradient. The sample is usually mixed with a solution of known gradient materials and subjected to centrifugation. Each particle sediments to the position at which the gradient density is equal to its own. The range of the density gradient is usually greater than that of the sample particles. It is used in purifying biological materials such as proteins, nucleic acids, organelles, and cell types. Isopycnic Centrifugation
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D012822 Silicon Dioxide Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid. Silica,Aerosil,Aerosil 380,Cristobalite,Quso G-32,Quso G32,Tridymite,380, Aerosil,Dioxide, Silicon,G32, Quso,Quso G 32
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
August 2012, Journal of proteome research,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
November 2003, Theriogenology,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
May 1988, Gamete research,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
April 2011, Andrologia,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
June 1989, Fertility and sterility,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
January 1996, The Journal of eukaryotic microbiology,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
January 2004, Theriogenology,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
January 2002, In vitro cellular & developmental biology. Animal,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
April 1992, Analytical and quantitative cytology and histology,
Olivier D'Amours, and Ézéquiel Calvo, and Sylvie Bourassa, and Patrick Vincent, and Patrick Blondin, and Robert Sullivan
February 1987, Bone marrow transplantation,
Copied contents to your clipboard!