Enhancement of resistance to Escherichia coli infection in mice by dihydroheptaprenol, a synthetic polyprenol derivative. 1987

S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa

The effect of a chemically synthesized polyprenol derivative, dihydroheptaprenol (DHP), on the nonspecific resistance of mice to infection with Escherichia coli was investigated. Mice that had been injected intramuscularly with 100 mg of DHP per kg of body weight, prepared as a microemulsion with lecithin, 1 to 4 days before infection showed enhanced resistance to subcutaneous (s.c.) infection with E. coli. When DHP-injected mice were inoculated s.c. with 3 X 10(8) E. coli, which induces fatal acute systemic infection in normal mice, propagation of bacteria in the blood, liver, and spleen was significantly inhibited. Enhanced resistance of athymic (nude) mice to E. coli infection was also induced by DHP. DHP markedly stimulated the generation of peripheral blood neutrophils, significantly enhanced clearance of E. coli from the bloodstream, and activated neutrophils and peritoneal macrophages for H2O2 generation. DHP restored the resistance to E. coli infection in cyclophosphamide-treated mice over the normal level. Furthermore, DHP shortened the period of the recovery of neutrophils and also enhanced clearance of E. coli from the bloodstream in cyclophosphamide-treated mice. DHP was nontoxic for mice and rats (400 mg/kg intramuscularly and 800 mg/kg s.c.) and nonpyrogenic at a dose of 30 mg/kg when administered intravenously to rabbits. These results suggest that the mechanism of action of DHP for enhancing resistance in mice may be, at least in part, its ability to stimulate the generation of potent neutrophils and to activate macrophages in the reticuloendothelial system.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D012157 Mononuclear Phagocyte System Mononuclear cells with pronounced phagocytic ability that are distributed extensively in lymphoid and other organs. It includes MACROPHAGES and their precursors; PHAGOCYTES; KUPFFER CELLS; HISTIOCYTES; DENDRITIC CELLS; LANGERHANS CELLS; and MICROGLIA. The term mononuclear phagocyte system has replaced the former reticuloendothelial system, which also included less active phagocytic cells such as fibroblasts and endothelial cells. (From Illustrated Dictionary of Immunology, 2d ed.) Reticuloendothelial System,Phagocyte System, Mononuclear,System, Mononuclear Phagocyte,System, Reticuloendothelial
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli

Related Publications

S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
August 1990, Vaccine,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
October 1975, Infection and immunity,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
March 1988, Journal of medical microbiology,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
December 1989, Nihon juigaku zasshi. The Japanese journal of veterinary science,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
February 1988, Microbial pathogenesis,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
February 2008, Protein engineering, design & selection : PEDS,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
August 1972, Nature: New biology,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
January 2002, Avian diseases,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
March 2013, Journal of bioscience and bioengineering,
S Araki, and K Kagaya, and K Kitoh, and M Kimura, and Y Fukazawa
August 1995, The Journal of veterinary medical science,
Copied contents to your clipboard!