Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. 1987

T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui

The complete nucleotide sequence of the glucoamylase gene GLU1 from the yeast Saccharomycopsis fibuligera has been determined. The GLU1 DNA hybridized to a polyadenylated RNA of 2.1 kilobases. A single open reading frame codes for a 519-amino-acid protein which contains four potential N-glycosylation sites. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. Glucoamylase was purified from a culture fluid of the yeast Saccharomyces cerevisiae which had been transformed with a plasmid carrying GLU1. The molecular weight of the protein was 57,000 by both gel filtration and acrylamide gel electrophoresis. The protein was glycosylated with asparagine-linked glycosides whose molecular weight was 2,000. The amino-terminal sequence of the protein began from the 28th amino acid residue from the first methionine of the putative precursor. The amino acid composition of the purified protein matched the predicted amino acid composition. These results confirmed that GLU1 encodes glucoamylase. A comparison of the amino acid sequence of glucoamylases from several fungi and yeast shows five highly conserved regions. One homology region is absent from the yeast enzyme and so may not be essential to glucoamylase function.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004718 Saccharomycetales An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats. Budding Yeast,Endomycetales,Endomycopsis,Yeast, Budding,Budding Yeasts,Endomycetale,Endomycopses,Saccharomycetale,Yeasts, Budding
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005959 Glucosidases Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-. Glucosidase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
September 1991, FEMS microbiology letters,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
July 1987, FEBS letters,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
November 1997, Acta crystallographica. Section D, Biological crystallography,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
September 1998, Acta crystallographica. Section D, Biological crystallography,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
April 2021, Data in brief,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
February 1985, Journal of bacteriology,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
August 2015, Journal of microbiology and biotechnology,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
July 2010, The protein journal,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
January 1988, Microbios,
T Itoh, and I Ohtsuki, and I Yamashita, and S Fukui
January 1988, The International journal of biochemistry,
Copied contents to your clipboard!