Adaptation of lipogenesis and lipolysis to dietary ethanol. 1987

L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz

The effect of dietary ethanol on metabolic fates of glucose and ethanol, and activities of lipoprotein lipase and hormone-sensitive lipase in several tissues of miniature pigs were determined in vitro. Ethanol and glucose were used at similar rates for fatty acid synthesis in liver and brain and CO2 production in liver. Ethanol was preferred over glucose for fatty acid and CO2 production in ileal mucosal cells. Glucose was the preferred substrate for lipogenesis and oxidation to CO2 in adipose tissue and skeletal muscle, and for oxidation to CO2 in brain. Dietary ethanol decreased glucose and ethanol conversion to fatty acids in ileal mucosa and brain, respectively. Dietary ethanol had no effect on the capacity of liver, adipose tissue, and skeletal muscle to convert either glucose or ethanol to long-chain fatty acids. The capacity to oxidize ethanol, but not glucose, to CO2 in liver was increased by dietary ethanol. No dietary ethanol effect was observed in other tissues. The capacity for removal of plasma triglycerides (based on lipoprotein lipase activity) tended to increase in adipose tissue and skeletal muscle of pigs fed ethanol. Mobilization of long-chain fatty acids from adipose tissue (based on hormone-sensitive lipase activity), triglyceride concentration in plasma, and percentage of lipid in liver remained unchanged when ethanol was fed. Livers of ethanol-fed pigs, however, were larger than livers of control pigs. Our results indicate that feeding miniature pigs 21-37% of total caloric intake as ethanol causes significant metabolic adaptations of lipid metabolism in liver and ileal mucosa, but not in adipose tissue, skeletal muscle, and brain. The ethanol feeding, however, did not cause fatty livers or hyperlipidemia.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets

Related Publications

L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
April 1970, Revista brasileira de medicina,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
January 1988, Annales d'endocrinologie,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
March 1976, Cutis,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
March 2008, Endocrinology,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
September 2010, Fish physiology and biochemistry,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
December 1994, Journal of lipid research,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
December 1990, Nihon juigaku zasshi. The Japanese journal of veterinary science,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
January 2011, PloS one,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
May 2019, Biochimica et biophysica acta. Molecular and cell biology of lipids,
L A Woollett, and G L Baldner-Shank, and S Aprahamian, and R L Engen, and D C Beitz
February 2011, Cell metabolism,
Copied contents to your clipboard!