Gluconeogenesis from serine in rabbit hepatocytes. 1987

G L Clary, and R W Guynn

L-Serine alone is not gluconeogenic in isolated rabbit hepatocytes, whereas in rat liver this amino acid has been reported to yield as much glucose as does L-lactate itself. The current study has been an investigation into the explanation of the difference between the two species. Hepatocytes were isolated from 48-h-starved, 750- to 1000-g male rabbits, and the viability of each preparation was judged by ATP levels (2.4 +/- 0.2 mumol/g wet wt) at the beginning and end of the incubation as well as gluconeogenesis from 10 mM L-lactate (0.83 +/- 0.08 mumol/min/g wet wt). L-Serine alone produced virtually no glucose or pyruvate accumulation above baseline. Hydroxypyruvate, however, did appear in the incubation mixture. When L-serine and pyruvate were combined to test the functional activity of L-serine:pyruvate aminotransferase (EC 2.6.1.51), however, gluconeogenesis remained at the rate produced by pyruvate alone (0.61 +/- 0.04 mumol/min/g wet wt). On the other hand, the combination of L-serine and L-lactate produced rates of glucose accumulation 35% above that of L-lactate alone. The combination of L-lactate plus hydroxypyruvate produced nearly maximal rates (1.39 +/- 0.08 mumol/min/g wet wt), approaching those achieved by a physiologic ratio (10:1) of L-lactate and pyruvate. Hydroxypyruvate itself was only moderately gluconeogenic (0.44 +/- 0.04 mumol/min/g wet wt). That a reduction of the cytoplasmic free [NAD+]/[NADH] ratio by L-lactate was not its only contribution to L-serine utilization was suggested by the fact that ethanol completely eliminated gluconeogenesis from virtually all precursors (or combinations) tested, with the exception of hydroxypyruvate. It has been concluded from the data that, probably in contrast to the rat, the major pathway for the entrance of L-serine into gluconeogenesis in rabbit hepatocytes is through the pathway initiated by L-serine: pyruvate aminotransferase and that L-lactate is an important participant (i) by generating cytoplasmic reducing equivalents (NADH), (ii) by supplying pyruvate for the transaminating reaction itself, and, perhaps, (iii) by preventing hydroxypyruvate from being reduced by L-lactate dehydrogenase (EC 1.1.1.27) to L-glycerate.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine

Related Publications

G L Clary, and R W Guynn
January 1983, The American journal of physiology,
G L Clary, and R W Guynn
October 1986, Journal of developmental physiology,
G L Clary, and R W Guynn
July 1975, Life sciences,
G L Clary, and R W Guynn
January 1977, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
G L Clary, and R W Guynn
February 1960, The Journal of biological chemistry,
G L Clary, and R W Guynn
October 1982, Archives of biochemistry and biophysics,
G L Clary, and R W Guynn
January 1981, The International journal of biochemistry,
G L Clary, and R W Guynn
April 1974, European journal of biochemistry,
G L Clary, and R W Guynn
January 1979, The International journal of biochemistry,
G L Clary, and R W Guynn
January 1982, The International journal of biochemistry,
Copied contents to your clipboard!