In vivo and in vitro microphysiology of focal epilepsy. 1987

P A Schwartzkroin
Department of Neurological Surgery, University of Washington, Seattle 98195.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004828 Epilepsies, Partial Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317) Abdominal Epilepsy,Digestive Epilepsy,Epilepsy, Focal,Epilepsy, Simple Partial,Focal Seizure Disorder,Gelastic Epilepsy,Partial Epilepsy,Partial Seizure Disorder,Seizure Disorder, Partial,Simple Partial Seizures,Amygdalo-Hippocampal Epilepsy,Benign Focal Epilepsy, Childhood,Benign Occipital Epilepsy,Benign Occipital Epilepsy, Childhood,Childhood Benign Focal Epilepsy,Childhood Benign Occipital Epilepsy,Epilepsy, Benign Occipital,Epilepsy, Localization-Related,Epilepsy, Partial,Occipital Lobe Epilepsy,Panayiotopoulos Syndrome,Partial Seizures, Simple, Consciousness Preserved,Rhinencephalic Epilepsy,Seizure Disorder, Focal,Subclinical Seizure,Uncinate Seizures,Abdominal Epilepsies,Amygdalo-Hippocampal Epilepsies,Benign Occipital Epilepsies,Digestive Epilepsies,Disorders, Focal Seizure,Disorders, Partial Seizure,Epilepsies, Abdominal,Epilepsies, Amygdalo-Hippocampal,Epilepsies, Benign Occipital,Epilepsies, Digestive,Epilepsies, Focal,Epilepsies, Gelastic,Epilepsies, Localization-Related,Epilepsies, Occipital Lobe,Epilepsies, Rhinencephalic,Epilepsies, Simple Partial,Epilepsy, Abdominal,Focal Epilepsies,Focal Epilepsy,Focal Seizure Disorders,Gelastic Epilepsies,Lobe Epilepsy, Occipital,Localization-Related Epilepsies,Localization-Related Epilepsy,Occipital Epilepsies, Benign,Occipital Epilepsy, Benign,Occipital Lobe Epilepsies,Partial Epilepsies,Partial Epilepsies, Simple,Partial Seizure Disorders,Partial Seizures, Simple,Rhinencephalic Epilepsies,Seizure Disorders, Focal,Seizure Disorders, Partial,Seizure, Subclinical,Seizure, Uncinate,Seizures, Simple Partial,Seizures, Subclinical,Seizures, Uncinate,Simple Partial Epilepsies,Subclinical Seizures,Uncinate Seizure
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

P A Schwartzkroin
January 2002, Revista de neurologia,
P A Schwartzkroin
November 1957, Concours medical,
P A Schwartzkroin
April 1951, Nordisk medicin,
P A Schwartzkroin
September 1961, Concours medical,
P A Schwartzkroin
October 1966, Developmental medicine and child neurology,
P A Schwartzkroin
January 2012, Annals of neurology,
P A Schwartzkroin
April 1967, Vascular surgery,
P A Schwartzkroin
October 1968, Revista brasileira de medicina,
P A Schwartzkroin
April 2022, Brain : a journal of neurology,
Copied contents to your clipboard!