Proteins of the kidney microvillar membrane. Purification and properties of the phosphoramidon-insensitive endopeptidase ('endopeptidase-2') from rat kidney. 1987

A J Kenny, and J Ingram
Department of Biochemistry, University of Leeds, U.K.

A second endopeptidase is present in the renal microvillar membrane of rats that can be distinguished from endopeptidase-24.11 by its insensitivity to inhibition by phosphoramidon. The purification of this enzyme, referred to as endopeptidase-2, is described. The enzyme was efficiently released from the membrane by treatment with papain. The subsequent four steps depended on ion-exchange and gel-filtration chromatography. These steps were monitored by the hydrolysis of various substrates: 125I-insulin B chain (the normal assay substrate), benzoyl-L-tyrosyl-p-aminobenzoate (Bz-Tyr-pAB), azocasein and benzyloxycarbonyl-L-phenylalanyl-L-arginine 7-amino-4-methylcoumarylamide (Z-Phe-Arg-NMec). All four assays revealed comparable stepwise increases in activity in the main stages of the purification, although it was apparent that the last-named fluorogenic assay depended on traces of aminopeptidase activity present in the preparation. The Km for 125I-insulin B chain was 16 microM and that for Bz-Tyr-pAB was 4.7 mM. Several experimental approaches confirmed that both peptides were hydrolysed by the same enzyme. The pH optimum was 7.3. Phosphate buffers were inhibitory and shifted the optimum to above pH 9. Zinc was detected in the purified enzyme; EDTA and 1,10-phenanthroline were strongly inhibitory. SDS/polyacrylamide-gel electrophoresis revealed polypeptides of equal staining intensity of Mr 80,000 and 74,000 in reducing conditions. In non-reducing conditions a single band of apparent Mr 220,000 was seen. Gel filtration yielded an Mr of 436,000. These results are consistent with an oligomeric structure in which the alpha and beta chains are linked by disulphide bridges. Endopeptidase-2 hydrolysed a number of neuropeptides. Enkephalins resisted attack, only the heptapeptide [Met]enkephalin-Arg6-Phe7 being susceptible to slow hydrolysis. Luliberin (luteinizing-hormone-releasing hormone) and bradykinin were rapidly hydrolysed. Neurotensin was shown to be slowly attacked at the Tyr3-Glu4 bond. Thus the specificity appears to be limited to the hydrolysis of bonds involving the carboxy group of aromatic residues, provided that this P1 residue is extended by additional residues, at least to the P3' position. The relationship of this membrane metalloendopeptidase to mouse meprin and human 'PABA peptidase' is discussed.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium

Related Publications

A J Kenny, and J Ingram
January 1980, The International journal of biochemistry,
Copied contents to your clipboard!