Spatial and temporal expression of cell surface galactosyltransferase during mouse spermatogenesis and epididymal maturation. 1987

N F Scully, and J H Shaper, and B D Shur
Department of Biochemistry and Molecular Biology, M. D. Anderson Hospital and Tumor Institute, University of Texas System Cancer Center, Houston 77030.

We have previously shown that sperm-egg recognition in the mouse is mediated by the binding of galactosyltransferase (GalTase) on the sperm surface to its appropriate glycoside substrate in the egg zona pellucida [L. C. Lopez, E. M. Bayna, D. Litoff, N. L. Shaper, J. H. Shaper, and B. D. Shur (1985) J. Cell Biol. 101, 1501-1510]. In the present study, we have defined the spatial and temporal expression of surface GalTase during spermatogenesis and epididymal maturation. Purified populations of spermatogenic cells were isolated by unit gravity sedimentation, and surface GalTase expression was determined by indirect immunofluorescence and by direct enzymatic assay. GalTase is present on the surface of all spermatogenic cells assayed. During differentiation, there is a progressive redistribution of GalTase from an initially diffuse and uniform localization on the surface of primary spermatocytes to a restricted plasma membrane domain overlying the dorsal aspect of the mature acrosome. This apparent redistribution of surface GalTase was confirmed by direct enzymatic assays, which show that surface GalTase activity, normalized per cell, remains relatively constant throughout spermatogenesis, despite a drastic reduction in cell surface area. When normalized to the relevant cell surface area, the GalTase concentration per square micrometer increases 77-fold from pachytene spermatocytes to cauda epididymal sperm. Cell surface GalTase is thought to be a cytoskeletally associated transmembrane protein [N. L. Shaper, P. L. Mann, and J. H. Shaper (1985) J. Cell Biochem. 28, 229-239]; consequently we examined whether cytoskeletal components may be involved in the redistribution of GalTase during spermatogenesis. beta-Tubulin, monomeric actin, and filamentous actin were found to be present during spermatogenesis, as assayed by indirect immunofluorescence and by Western immunoblotting. alpha-Actinin and vinculin were not detectable under these conditions and served as negative controls. During spermatogenesis, the distribution of tubulin coincides with the appearance of the mitotic spindle, flagellum, and manchette. On the other hand, the distribution of filamentous actin coincides with surface GalTase, suggesting that actin-containing microfilaments may participate in the redistribution of surface GalTase during spermatogenesis.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase

Related Publications

N F Scully, and J H Shaper, and B D Shur
October 2006, Biology of reproduction,
N F Scully, and J H Shaper, and B D Shur
July 1977, The Journal of cell biology,
N F Scully, and J H Shaper, and B D Shur
January 1997, The American journal of physiology,
N F Scully, and J H Shaper, and B D Shur
January 1982, Annals of the New York Academy of Sciences,
N F Scully, and J H Shaper, and B D Shur
September 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
N F Scully, and J H Shaper, and B D Shur
May 2003, Microscopy research and technique,
N F Scully, and J H Shaper, and B D Shur
August 1989, Developmental biology,
N F Scully, and J H Shaper, and B D Shur
May 1995, Molecular reproduction and development,
Copied contents to your clipboard!