Differentiation of bone marrow-derived lymphocytes. 1978

J W Uhr, and E S Vitetta

Murine lymphocytes were enzymatically radioiodinated and the class of immunoglobulin (isotype) on the cell surface was studied as a function of differentiation and ontogeny. The results indicate that IgM is the first isotype to appear and that IgD is subsequently acquired. A proportion of IgM-bearing cells also bear IgD. The acquisition of IgD does not appear to be under the influence of the thymus or of exposure to antigen. The observations suggest a sequence of differentiation steps in which B-cells first express IgM then acquire IgD (to become "double bearers"), and eventually lose IgM. The relationship of the IgD-bearing cells to the IgG-bearing memory cells has not yet been established. The implications of these findings with regard to function and genetic organization are discussed.

UI MeSH Term Description Entries
D007072 Immunoglobulin D An immunoglobulin which accounts for less than 1% of plasma immunoglobulin. It is found on the membrane of many circulating B LYMPHOCYTES. IgD,IgD1,IgD2
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J W Uhr, and E S Vitetta
March 1977, Proceedings of the National Academy of Sciences of the United States of America,
J W Uhr, and E S Vitetta
April 1973, The Journal of experimental medicine,
J W Uhr, and E S Vitetta
September 1974, Journal of immunology (Baltimore, Md. : 1950),
J W Uhr, and E S Vitetta
January 1974, Society of General Physiologists series,
J W Uhr, and E S Vitetta
February 1973, European journal of immunology,
J W Uhr, and E S Vitetta
January 2007, Current medicinal chemistry,
J W Uhr, and E S Vitetta
January 2019, Journal of innate immunity,
J W Uhr, and E S Vitetta
August 1984, Cellular immunology,
J W Uhr, and E S Vitetta
October 1976, Proceedings of the National Academy of Sciences of the United States of America,
J W Uhr, and E S Vitetta
December 1975, Lymphology,
Copied contents to your clipboard!