Regulation of the Drosophila dopa decarboxylase gene in neuronal and glial cells. 1987

C J Beall, and J Hirsh
Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115.

A cis-regulatory element selectively required for the Drosophila melanogaster dopa decarboxylase gene (Ddc) in the central nervous system has been identified previously (Scholnick et al. 1986). Here, we show that at least one additional regulatory element is required for normal neuronal expression of Ddc. We find that Ddc is normally expressed in about 125 discrete neurons and in a diffused network comprising a subset of glial cells. The expression of in vitro-altered Ddc genes was studied by immunohistochemistry following germ line reintegration with P-element vectors. Normal neuron-specific Ddc gene expression requires both the initially identified element (element I) which is 60 bp upstream from the RNA start site, and an additional regulatory element located 800-2200 bp upstream. This latter element is required for neuronal expression but is not necessary for glial expression of Ddc. We provide a model to explain how interactions between multiple regulatory elements may serve to specify cell-specific gene expression.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004296 Dopa Decarboxylase One of the AROMATIC-L-AMINO-ACID DECARBOXYLASES, this enzyme is responsible for the conversion of DOPA to DOPAMINE. It is of clinical importance in the treatment of Parkinson's disease. Decarboxylase, Dopa
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001142 Aromatic-L-Amino-Acid Decarboxylases An enzyme group with broad specificity. The enzymes decarboxylate a range of aromatic amino acids including dihydroxyphenylalanine (DOPA DECARBOXYLASE); TRYPTOPHAN; and HYDROXYTRYPTOPHAN. Amino Acid Decarboxylases, Aromatic,Aromatic Amino Acid Decarboxylase,Aromatic Amino Acid Decarboxylases,5-HTPase,5-Hydroxytryptophan Decarboxylase,Aromatic-L-Amino-Acid Decarboxylase,Hydroxytryptophan Decarboxylase,Tryptophan Decarboxylase,5 HTPase,5 Hydroxytryptophan Decarboxylase,Aromatic L Amino Acid Decarboxylase,Aromatic L Amino Acid Decarboxylases,Decarboxylase, 5-Hydroxytryptophan,Decarboxylase, Aromatic-L-Amino-Acid,Decarboxylase, Hydroxytryptophan,Decarboxylase, Tryptophan,Decarboxylases, Aromatic-L-Amino-Acid

Related Publications

C J Beall, and J Hirsh
January 1990, Annals of the New York Academy of Sciences,
C J Beall, and J Hirsh
December 1992, Molecular and cellular biology,
C J Beall, and J Hirsh
January 1986, Progress in clinical and biological research,
C J Beall, and J Hirsh
June 1984, Proceedings of the National Academy of Sciences of the United States of America,
C J Beall, and J Hirsh
June 1981, Molecular and cellular biology,
C J Beall, and J Hirsh
May 1989, Genes & development,
C J Beall, and J Hirsh
June 2000, Insect molecular biology,
C J Beall, and J Hirsh
November 1986, Science (New York, N.Y.),
Copied contents to your clipboard!