| D008780 |
Methyltransferases |
A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. |
Methyltransferase |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D003596 |
Cytosine |
A pyrimidine base that is a fundamental unit of nucleic acids. |
|
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012313 |
RNA |
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) |
RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated |
|
| D012343 |
RNA, Transfer |
The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. |
Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer |
|
| D014176 |
Protein Biosynthesis |
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. |
Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations |
|
| D015257 |
DNA-Cytosine Methylases |
Methylases that are specific for CYTOSINE residues found on DNA. |
Cytosine-Specific DNA Methylase,DNA Modification Methylases (Cytosine-Specific),DNA-Cytosine Methylase,Modification Methylases (Cytosine-Specific),Site-Specific DNA Methyltransferase (Cytosine-Specific),Site-Specific Methyltransferases (Cytosine-Specific),Cytosine-Specific DNA Methylases,DNA Modification Methylases Cytosine Specific,Modification Methylases (Cytosine Specific),Site Specific Methyltransferases (Cytosine Specific),Cytosine Specific DNA Methylase,Cytosine Specific DNA Methylases,DNA Cytosine Methylase,DNA Cytosine Methylases,DNA Methylase, Cytosine-Specific,DNA Methylases, Cytosine-Specific,Methylase, Cytosine-Specific DNA,Methylase, DNA-Cytosine,Methylases, Cytosine-Specific DNA |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|