NMR study of structure and electron transfer mechanism of Pseudomonas aeruginosa azurin. 1988

C M Groeneveld, and G W Canters
Gorlaeus Laboratories, Leiden University, The Netherlands.

The nuclear spin-spin and spin-lattice relaxation times of the C epsilon 1-proton of His-35 and the C delta 2-proton of His-46 of reduced Pseudomonas aeruginosa azurin have been determined at 298 and 320 K and at pH 4.5 and 9.0 at various concentrations of total azurin and in the presence of varying amounts of oxidized azurin. The relaxation times appear strongly influenced by the electron self-exchange reaction between oxidized and reduced protein. The T1 data of the His-35 proton have been analyzed according to the "fast-exchange limit," while the "slow-exchange limit" appears to obtain for the T2 data of the His-46 proton. Analysis of the proton relaxation data yields values of the electron self-exchange rate constants of (9.6 +/- 0.7) X 10(5) M-1 S-1 (pH 4.5) and (7.0 +/- 1.3) X 10(5) M-1 S-1 (pH 9.0) at 298 K. The dipolar correlation time amounts to 1-2.5 ns in the temperature range of 298-320 K. A Fermi-contact interaction of about 100 mG for the C delta 2-proton of His-46 is compatible with the experimental observations. The pH-induced conformational changes lead to variations on the order of about 1 A in the distance from the copper to the His-35 protons. The data implicate the "hydrophobic patch" around His-117 as the site of electron transfer in the self-exchange reaction of the azurin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D001400 Azurin A bacterial protein from Pseudomonas, Bordetella, or Alcaligenes which operates as an electron transfer unit associated with the cytochrome chain. The protein has a molecular weight of approximately 16,000, contains a single copper atom, is intensively blue, and has a fluorescence emission band centered at 308nm.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

C M Groeneveld, and G W Canters
July 1997, European journal of biochemistry,
C M Groeneveld, and G W Canters
April 2011, Journal of the American Chemical Society,
C M Groeneveld, and G W Canters
April 1985, Proceedings of the National Academy of Sciences of the United States of America,
C M Groeneveld, and G W Canters
March 1975, The Biochemical journal,
C M Groeneveld, and G W Canters
April 2001, Proceedings of the National Academy of Sciences of the United States of America,
C M Groeneveld, and G W Canters
November 1981, European journal of biochemistry,
C M Groeneveld, and G W Canters
February 2014, Journal of the American Chemical Society,
C M Groeneveld, and G W Canters
July 2013, Journal of the American Chemical Society,
C M Groeneveld, and G W Canters
November 1977, The Biochemical journal,
Copied contents to your clipboard!