Evidence for antibody-dependent cell-mediated cytotoxicity by T cells bearing receptors for IgG. 1979

L Shen, and P M Lydyard, and P Penfold, and I M Roitt

Human lymphocyte populations comprising T cells, T depleted lymphocytes, and T cells enriched for, or depleted of, IgG Fc receptor-bearing (TG) cells, were separated using rosette techniques. All lymphocytes were assessed for the ability to lyse antibody-coated chicken erythrocytes and SL2 mouse lymphoma cells. Their activity was compared with that of monocytes and neutrophil-enriched preparations. IgG Fc receptor positive cells within the T population were highly active in both cytotoxicity assays; the activity could not be ascribed to contamination by monocytes or neutrophils. The TG cells forming junctions with the target cells possessed a characteristic ultrastructure.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007141 Immunoglobulin Fc Fragments Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fc Fragment,Fc Fragments,Fc Immunoglobulin,Fc Immunoglobulins,Ig Fc Fragments,Immunoglobulin Fc Fragment,Immunoglobulins, Fc,Immunoglobulins, Fc Fragment,Fc Fragment Immunoglobulins,Fc Fragment, Immunoglobulin,Fc Fragments, Ig,Fc Fragments, Immunoglobulin,Fragment Immunoglobulins, Fc,Fragment, Fc,Fragments, Ig Fc,Immunoglobulin, Fc
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D012397 Rosette Formation The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells. Immunocytoadherence,Formation, Rosette,Formations, Rosette,Immunocytoadherences,Rosette Formations
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

L Shen, and P M Lydyard, and P Penfold, and I M Roitt
November 1974, Journal of immunology (Baltimore, Md. : 1950),
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
January 1974, International archives of allergy and applied immunology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
May 1983, Cellular immunology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
April 1995, Journal of gastroenterology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
December 2021, Journal of hematology & oncology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
January 1980, Journal of immunological methods,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
August 2014, European journal of immunology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
November 1974, Clinical immunology and immunopathology,
L Shen, and P M Lydyard, and P Penfold, and I M Roitt
May 1978, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!