Topography of Reward and Aversion Encoding in the Mesolimbic Dopaminergic System. 2019

Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.

Dopamine (DA) neurons in the VTA play essential roles in adaptive motivated behavior, which requires rapid discrimination between positive and negative motivational signature. However, the precise functional DA circuitry processing reward and aversive information remain elusive. Here, we report that the encoding of reward and aversion by the DA system in the NAc is tightly associated with its anatomical location. By recording the dynamics of DA release with genetically encoded fluorescent DA sensor using in vivo fiber photometry in freely moving male mice, we found that the DA-sensor signal in the dorsomedial NAc shell and dorsolateral NAc shell were increased during rewarding events and decreased during aversive noxious events. In contrast, the release of DA in the ventromedial NAc shell was increased by both rewarding and aversive stimuli, whereas the DA-sensor signal in the central ventromedial NAc shell and ventrolateral NAc shell showed complex dynamics. Furthermore, the activity of DA fibers in different subregions of NAc measured with calcium sensor largely recapitulated the changes of DA-sensor signal in response to rewarding and aversive stimuli. In addition, correlation analysis showed that the response magnitude of DA-sensor or fibers significantly changed along the DV axis of the NAc. These results revealed the distinct role of the mesolimbic DA system in different subregions of NAc in encoding value and salience.SIGNIFICANCE STATEMENT Adaptive motivated behavior requires rapid discrimination between favorable and harmful events and is dynamically modulated by dopamine (DA) neurons in the VTA. However, the precise relationship between distinct DA circuitry and reward/aversion signal encoding is not well understood. Here, by recording the dynamics of DA release and the activity of DA fibers in each subregion of the NAc using in vivo fiber photometry in freely moving animals, we found that the DA system in the dorsomedial/dorsolateral, ventromedial, and ventrolateral NAc shell plays different roles in encoding value and salience. These results extend our knowledge about how the mesolimbic DA system process motivational information at the circuitry level.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009042 Motivation Those factors which cause an organism to behave or act in either a goal-seeking or satisfying manner. They may be influenced by physiological drives or by external stimuli. Incentives,Disincentives,Expectations,Disincentive,Expectation,Incentive,Motivations
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012201 Reward An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure. Rewards
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059290 Dopaminergic Neurons Neurons whose primary neurotransmitter is DOPAMINE. Dopamine Neurons,Dopamine Neuron,Dopaminergic Neuron,Neuron, Dopamine,Neuron, Dopaminergic,Neurons, Dopamine,Neurons, Dopaminergic

Related Publications

Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
November 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
January 1996, Pharmacology, biochemistry, and behavior,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
January 2019, Frontiers in behavioral neuroscience,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
June 2020, Scientific reports,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
May 2010, Biological psychiatry,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
January 1977, Advances in biochemical psychopharmacology,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
December 2020, Experimental & molecular medicine,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
August 2008, Biological psychiatry,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
September 2010, Journal of neurochemistry,
Lei Yuan, and Yan-Nong Dou, and Yan-Gang Sun
January 2022, Translational psychiatry,
Copied contents to your clipboard!