[Hexameric purine nucleoside phosphorylase II from Escherichia coli K-12. Physico-chemical and catalytic properties and stabilization with substrates]. 1987

Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian

Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
January 1980, Molecular & general genetics : MGG,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
February 1975, European journal of biochemistry,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
July 1968, Biochimica et biophysica acta,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
August 1988, Journal of bacteriology,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
April 2005, Journal of molecular biology,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
July 2001, Protein expression and purification,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
November 1976, Biochemistry,
Kh O Bezirdzhian, and Sh M Kocharian, and Zh I Akopian
March 2010, Journal of molecular modeling,
Copied contents to your clipboard!