MicroRNAs (miRNAs) are emerging as important regulators of various physiological and pathological processes and may serve key roles in the maintenance of bone homeostasis via effects on osteoblast differentiation. The aim of the present study was to define the role of miR-877-3p in osteoblast differentiation using MC3T3-E1 cells, an osteoblast precursor cell line. It was demonstrated using RT-qPCR analysis that miR-877-3p was gradually increased in MC3T3-E1 cells during the osteoblastic differentiation induced by transforming growth factor (TGF)-β1. Gain-of-function and loss-of-function experiments revealed that the overexpression of miR-877-3p promoted the osteoblastic differentiation of MC3T3-E1 cells, whereas depletion of miR-877-3p inhibited this process in vitro and in vivo. Bioinformatics analysis and validation experiments demonstrated that Smad7, which acts as a negative regulator of osteogenesis, was a target of miR-877-3p. Furthermore, the overexpression of Smad7 partially reversed the osteoblastic differentiation of MC3T3-E1 cells induced by miR-877-3p. In conclusion, the results of the present study suggest that the miR-877-3p/Smad7 axis is associated with the osteoblastic differentiation of MC3T3-E1 cells and may indicate a potential therapeutic approach for osteogenesis disorders.
| UI | MeSH Term | Description | Entries |
|---|