Renal vascular response to combined hypoxia and hypercapnia in conscious rats. 1988

B R Walker, and B L Brizzee
Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112.

Experiments were performed to test for a possible role of arginine vasopressin (AVP) in the renal vascular responses to the combination of hypoxia and varying levels of CO2 in the conscious rat. Animals were instrumented with pulsed Doppler flow probes on the left renal artery and with arterial and venous catheters. Renal blood flow (RBF) and mean arterial blood pressure (MABP) were determined in conscious, unrestrained rats under the following conditions: 1) hypocapnic hypoxia [arterial PO2 (PaO2) = 26 Torr; arterial PCO2 (PaCO2) = 21 Torr]; 2) isocapnic hypoxia (PaO2 = 34 Torr; PaCO2 = 36 Torr); 3) hypercapnic hypoxia (PaO2 = 42 Torr; PaCO2 = 57 Torr); and 4) room air control (PaO2 = 93 Torr; PaCO2 = 38 Torr). MABP fell from 104 +/- 2 to 83 +/- 5 mmHg during hypocapnic hypoxia but was unaffected by the other stimuli. RBF was significantly reduced by both hypocapnic and hypercapnic hypoxia and unchanged in the other protocols, whereas renal vascular resistance (RVR) was elevated only in the hypercapnic hypoxia group. Additional experiments were performed to test whether activation of V1-vasopressinergic receptors during hypoxia might mediate the observed changes in renal hemodynamics. Experiments were performed as before except that at the midpoint of hypoxic or room air exposure, 10 micrograms/kg of the specific V1 vasopressinergic antagonist d(CH2)5Tyr(Me)AVP was administered. However, administration of the V1 antagonist had no effect on the observed renal hemodynamic responses to hypoxia. Therefore, although intense chemoreceptor stimulation by hypercapnic hypoxia may increase RVR and decrease renal perfusion, these renal hemodynamic responses do not appear to be mediated by increased circulating levels of AVP.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003243 Consciousness Sense of awareness of self and of the environment. Consciousnesses
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

B R Walker, and B L Brizzee
November 1966, Circulation research,
B R Walker, and B L Brizzee
April 2002, Respiratory physiology & neurobiology,
B R Walker, and B L Brizzee
April 1975, Journal of applied physiology,
B R Walker, and B L Brizzee
January 1980, Journal of applied physiology: respiratory, environmental and exercise physiology,
B R Walker, and B L Brizzee
August 1970, Clinical science,
B R Walker, and B L Brizzee
March 1988, The American journal of physiology,
B R Walker, and B L Brizzee
April 2010, Respiratory physiology & neurobiology,
B R Walker, and B L Brizzee
June 1958, The Japanese journal of physiology,
B R Walker, and B L Brizzee
April 1997, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!