Transient dopaminergic inhibition of prolactin release from hybrid cells derived by fusion of normal rat pituitary and GH4C1 tumor cells. 1988

R N Day, and P M Hinkle
Department of Pharmacology, University of Rochester Medical Center, New York 14642.

The clonal rat pituitary tumor cell line GH4C1 secretes PRL but does not respond to dopamine, a physiological inhibitor of PRL. In an attempt to generate a dopamine-responsive cell line, GH4C1 cells, which lack the enzyme hypoxanthine-guanine phosphoribosyltransferase, were fused with cells from the pituitary glands of lactating rats to generate cell hybrids. The GH4C1 cells were fused with dispersed normal pituitary cells by either chemical fusion in 40% polyethylene glycol or electrofusion. The fused cells were grown in medium with hypoxanthine, aminopterin, and thymidine (HAT) for 4 weeks to select for hybrid cells. Control fusions between GH4C1 cells only or normal cells only did not produce viable colonies. Of 36 HAT-selected colonies, 3 responded to 10 nM bromocryptine (BCR) with inhibition of TRH-stimulated PRL release. These hybrid colonies had an inhibitory response similar to that of normal pituitary cells in culture. Both TRH- and vasoactive intestinal peptide-stimulated PRL release were inhibited to basal levels by 10 nM BCR, with an IC50 for BCR of approximately 0.25 nM. Basal hormone release was not inhibited by BCR. The BCR-sensitive hybrid cells grew more slowly than the parental GH4C1 line both in culture and when passaged in female Wistar-Furth rats. The response of the hybrid cells to the dopamine agonist and the characteristic of slow growth were lost after 9 months of continuous culture and after freezing cells. The parental GH4C1 cells were grown in female Wistar-Furth rats, the resulting tumors were dissociated, and the cells were grown in culture. This resulted in a brief establishment of the dopamine response. Stimulated PRL and GH release from freshly dispersed GH4C1 tumor cells was inhibited by BCR at concentrations from 0.1-10 nM, and spiroperidol reversed the inhibition. The inhibitory response to the dopaminergic agonist was lost quickly as the cells were carried in culture. These results demonstrate that GH4C1 cells may have the genetic information necessary for dopaminergic inhibition of PRL synthesis, but that the dopamine response is not observed under standard tissue culture conditions.

UI MeSH Term Description Entries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011920 Rats, Inbred WF An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Wistar Furth,Rats, Wistar Furth,Rats, WF,Inbred WF Rat,Inbred WF Rats,Rat, Inbred WF,Rat, WF,WF Rat,WF Rat, Inbred,WF Rats,WF Rats, Inbred,Wistar Furth Rats
D001971 Bromocriptine A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion. 2-Bromoergocryptine,Bromocryptin,2-Bromo-alpha-ergocryptine,2-Bromo-alpha-ergokryptine,2-Bromoergocryptine Mesylate,2-Bromoergocryptine Methanesulfonate,2-Bromoergokryptine,Bromocriptin,Bromocriptine Mesylate,CB-154,Parlodel,2 Bromo alpha ergocryptine,2 Bromo alpha ergokryptine,2 Bromoergocryptine,2 Bromoergocryptine Mesylate,2 Bromoergocryptine Methanesulfonate,2 Bromoergokryptine,CB 154,CB154,Mesylate, 2-Bromoergocryptine,Mesylate, Bromocriptine,Methanesulfonate, 2-Bromoergocryptine
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females

Related Publications

R N Day, and P M Hinkle
November 1985, Molecular and cellular endocrinology,
R N Day, and P M Hinkle
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!