Differential efficiency of mutagenesis at three genetic loci in CHO cells by a benzo[a]pyrene diol epoxide. 1988

M C MacLeod, and G Adair, and R M Humphrey
Science Park-Research Division, University of Texas System Cancer Center, Smithville 78957.

The formation of DNA adducts by the ultimate carcinogen 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE-I) has been implicated in the process of carcinogenesis. In a line of Chinese hamster ovary (CHO) cells designated AT3-2 and in two derivative mutant lines, UVL-1 and UVL-10, originally selected for hypersensitivity to UV-irradiation, we have measured the formation of BPDE-I: DNA adducts and the production of biological damage. The quantity and quality of BPDE-I: DNA adducts formed initially in the 3 cell lines are identical over a wide range of BPDE-I doses. However, the UVL lines are unable to remove adducts from their DNA, while the AT3-2 cells remove about 50% of the BPDE-I: DNA adducts in a 24-h incubation. Correlated with this, the UVL lines are more sensitive to the lethal effects of BPDE-I than are the AT3-2 cells. Mutant frequencies were measured at the aprt, hprt and oua loci and were found to increase linearly with BPDE-I: DNA adduct formation at doses which gave greater than 50% survival. At the hprt and oua loci, the efficiency of mutation induction was similar for AT3-2 and UVL-10 cells. UVL-1 cells showed slightly higher (within a factor of 2-3) mutant frequencies in response to BPDE-I compared to AT3-2 at these two loci. However, at the aprt locus the repair-deficient cells were much more highly mutable (9-15-fold) than the repair-proficient AT3-2 cells. Based on the measured average level of adduct formation, it is calculated that 15% of the BPDE-I: DNA adducts in the aprt gene are converted into mutations. However, the possibility exists that the aprt locus is subject to higher levels of modification by BPDE-I than is the bulk DNA, which would lead to an artifactually high apparent conversion frequency.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004101 Dihydroxydihydrobenzopyrenes Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity. Benzopyrene Dihydrodiols,Dihydrobenzopyrene Diols,Dihydrodiolbenzopyrenes,Dihydrodiols, Benzopyrene,Diols, Dihydrobenzopyrene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000228 Adenine Phosphoribosyltransferase An enzyme catalyzing the formation of AMP from adenine and phosphoribosylpyrophosphate. It can act as a salvage enzyme for recycling of adenine into nucleic acids. EC 2.4.2.7. AMP Pyrophosphorylase,Transphosphoribosidase,APRTase,Phosphoribosyltransferase, Adenine,Pyrophosphorylase, AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M C MacLeod, and G Adair, and R M Humphrey
March 1988, Somatic cell and molecular genetics,
M C MacLeod, and G Adair, and R M Humphrey
July 1988, Somatic cell and molecular genetics,
M C MacLeod, and G Adair, and R M Humphrey
June 1977, International journal of cancer,
M C MacLeod, and G Adair, and R M Humphrey
October 1987, Biochimica et biophysica acta,
M C MacLeod, and G Adair, and R M Humphrey
February 1993, Biochemistry,
M C MacLeod, and G Adair, and R M Humphrey
May 2004, Mutation research,
M C MacLeod, and G Adair, and R M Humphrey
November 1974, Nature,
M C MacLeod, and G Adair, and R M Humphrey
May 1976, Nature,
M C MacLeod, and G Adair, and R M Humphrey
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!