Carbamate formation on tubulin: CO2/bicarbonate buffers protect tubulin from inactivation by reductive methylation and carbamoylation and promote microtubule assembly at alkaline pH. 1988

R W Clark, and M Volpi, and R D Berlin
Department of Physiology, University of Connecticut Health Center, Farmington 06032.

Carbamoylation and reductive methylation of tubulin have been shown previously to inhibit microtubule assembly, probably by attack on essential internal lysine residues [Mellado, W., Slebe, J., & Maccioni, R.B. (1982) Biochem. J. 203, 675-681; Szasz, J., Burns, R., & Sternlicht, H. (1982) J. Biol. Chem. 257, 3697-3704]. We show first that this inhibition is blocked by the presence of HCO3-/CO2 buffer at physiological concentrations during the carbamoylation or reductive methylation. Under conditions that block assembly, the amount of radiolabeled cyanate or formaldehyde incorporated by these reactions in the absence of HCO3-/CO2 was approximately four carbamoyl or five methyl groups in a ratio of approximately 1.7 alpha chain/beta chain. In the presence of HCO3-/CO2, the formaldehyde incorporation is decreased roughly 0.5 mol in each of the alpha and beta chains, and cyanate incorporation, roughly 1.0 mol/mol of alpha or beta monomer. These results are consistent with the hypothesis that CO2 competed with formaldehyde or cyanate for uncharged amino groups and led to the reversible formation of carbamates. The complete antagonism of the inhibition of microtubule assembly by reductive methylation by CO2, even though the number of methyl groups incorporated was reduced by only 0.5 mol/tubulin monomer, was consistent with the possibility that reductive methylation opened up additional residues for attack. Indeed, using an adaptation of the method of Gros et al. for measurement of carbamates [Gros, G., Forster, R.E., & Lin, L. (1976) J. Biol. Chem. 251, 4398-4407], we found that reductive methylation with 2 mM formaldehyde (assembly blocked) did not decrease carbamate formation (carbamate formation was inhibited at higher formaldehyde concentrations).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon

Related Publications

R W Clark, and M Volpi, and R D Berlin
April 1981, The Journal of cell biology,
R W Clark, and M Volpi, and R D Berlin
June 2008, Experimental cell research,
R W Clark, and M Volpi, and R D Berlin
July 1970, The New England journal of medicine,
R W Clark, and M Volpi, and R D Berlin
December 2004, Current biology : CB,
R W Clark, and M Volpi, and R D Berlin
February 2018, Applied and environmental microbiology,
R W Clark, and M Volpi, and R D Berlin
November 1976, Biochimica et biophysica acta,
R W Clark, and M Volpi, and R D Berlin
January 2001, The Journal of biological chemistry,
Copied contents to your clipboard!