Twisted plywood architecture of collagen fibrils in human compact bone osteons. 1988

M M Giraud-Guille
Centre de Biologie Cellulaire. EPHE, Ivry-sur-Seine, France.

Ultrathin sections of decalcified human compact bone, observed by transmission electron microscopy, reveal that collagen fibrils can be distributed in the form of a superimposed series of nested arcs. This characteristic pattern has never been interpreted in previous works on compact bone structure. We demonstrate, by goniometric observations at the ultrastructural level, that such series of nested arcs are a consequence of the "twisted plywood" architecture of collagen fibrils in the compact bone matrix. In the same specimens, an "orthogonal plywood" disposition of collagen fibrils is also observed; a transition exists between these two types of orders. We show that the "twisted plywood structure" accounts well for certain optical properties of osteons, observed in polarizing microscopy, described as "intermediate osteons." The particular geometry of collagen fibrils, leading to nested arcs in oblique sections, is analogous to the distribution of molecules in certain liquid crystals (called cholesteric liquid crystals). The principle of a liquid crystalline self-assembly of the collagen matrix in bone is therefore discussed.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005269 Femur The longest and largest bone of the skeleton, it is situated between the hip and the knee. Trochanter,Greater Trochanter,Lesser Trochanter,Femurs,Greater Trochanters,Lesser Trochanters,Trochanter, Greater,Trochanter, Lesser,Trochanters,Trochanters, Greater,Trochanters, Lesser
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

M M Giraud-Guille
June 1999, European journal of dermatology : EJD,
M M Giraud-Guille
June 1991, Bulletin de l'Association des anatomistes,
M M Giraud-Guille
January 1977, Acta anatomica,
M M Giraud-Guille
June 2017, Acta biomaterialia,
M M Giraud-Guille
March 1978, Journal of dental research,
M M Giraud-Guille
February 2018, International journal of biological macromolecules,
Copied contents to your clipboard!