Design, synthesis and biological evaluation of novel 5-(piperazin-1-yl)quinolin-2(1H)-one derivatives as potential chitin synthase inhibitors and antifungal agents. 2019

Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address: jiqing@swu.edu.cn.

A series of 5-(4-substituted piperazin-1-yl)quinolin-2(1H)-one derivatives (4a-4w) has been designed as chitin synthase inhibitors and antifungal agents. The designed compounds were obtained by an environmentally benign route in four steps starting from 5-amino-3,4-dihydroquinolin-2(1H)-one which was offered by an easily achieved synthetic method. The synthesized compounds were tested for their inhibition potency against chitin synthase. Compounds 4a and 4c exhibited excellent inhibitory activity with IC50 values of 0.10 mM and 0.15 mM, respectively, which is better than that of Polyoxin B whose IC50 value is 0.18 mM. Compounds 4h, 4i, 4j, 4k and 4n exerted moderate inhibition potency with IC50 values of 0.38, 0.36, 0.47, 0.47 and 0.37 mM, respectively. These synthesized compounds were also evaluated for their in vitro antifungal activity against Candida albicans, Crytococcus neoformans, and Aspergillus flavus. Compounds 4a, 4i and 4j exhibited the most potent antifungal activity against C. albicans with MIC of 32 μg/mL, which were similar to that of Polyoxin B. The results of antibacterial activity against selected strains showed that the designed compounds have little potency against bacteria and indicated that these compounds were chitin synthase inhibitors and have selectively antifungal activity.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D002687 Chitin Synthase An enzyme that converts UDP glucosamine into chitin and UDP. EC 2.4.1.16. Chitin-UDP Acetylglucosaminyltransferase,Chitin Synthase 1,Chitin Synthetase 2,trans-N-Acetylglucosaminosylase,Acetylglucosaminyltransferase, Chitin-UDP,Chitin UDP Acetylglucosaminyltransferase,trans N Acetylglucosaminosylase
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D001231 Aspergillus flavus A species of imperfect fungi which grows on peanuts and other plants and produces the carcinogenic substance aflatoxin. It is also used in the production of the antibiotic flavicin. Aspergillus parvisclerotigenus,Petromyces flavus
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
April 2022, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
June 2020, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
November 2019, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
December 2022, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
September 2018, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
November 2021, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
January 2016, European journal of medicinal chemistry,
Qinggang Ji, and Qiao Deng, and Bing Li, and Baihui Li, and Yangli Shen
January 2024, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!