Characterization of prolactin-releasing factor in the rat posterior pituitary. 1988

J F Hyde, and N Ben-Jonathan
Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46223.

We previously reported that the rat posterior pituitary contains a potent PRL-releasing factor (PRF) which is distinct from oxytocin (OT), TRH, and angiotensin II (AII). The objectives of this study were 1) to examine whether posterior pituitary extracts stimulate PRL release in the presence of dopamine (DA), 2) to determine the chemical nature of PRF, and 3) to estimate its mol wt. Perifused anterior pituitary cells were used to assess PRF activity. Posterior pituitaries and medial basal hypothalamus (MBH) fragments were extracted with perchloric acid and lyophilized. Subsequent to various treatments, samples were reconstituted in the perifusion medium and introduced to the cells in short pulses. Fractions were collected and analyzed for hormone content by RIA. During a constant infusion of DA (50 nM), PRL secretion was inhibited by 75%, yet the posterior pituitary extract retained its ability to rapidly stimulate PRL release. Studies using proteolytic enzymes showed that posterior pituitary PRF was resistant to inactivation by trypsin, whereas the PRF activity of AII was abolished. Both chymotrypsin and proline-specific endopeptidase significantly reduced the PRF activity in the posterior pituitary. The PRL-releasing activity of TRH was not affected by chymotrypsin. Immunoreactive vasoactive intestinal polypeptide was undetectable in posterior pituitary extracts. Oxidation of posterior pituitary extracts with performic acid caused only a modest reduction of their PRF activity, while the ability of OT to stimulate PRL release as well as immunoreactive OT was abolished. Studies using ultrafiltration membranes showed that the PRF activity in the posterior pituitary was less than 5,000 mol wt. Furthermore, posterior pituitary PRF partitioned in nearly equal amounts across 1K membranes, as did AII and OT. In contrast, about 80% of the PRF activity in the MBH and all of the synthetic TRH passed through the 1K membranes. We conclude that 1) posterior pituitary PRF can stimulate PRL secretion from perifused anterior pituitary cells in the presence of physiological concentrations of DA; 2) PRF is a small peptide(s) of less than 5,000, and perhaps closer to 1,000, mol wt; 3) PRF is resistant to inactivation by trypsin and to oxidation by performic acid, but is hydrolyzed by both chymotrypsin and proline-specific endopeptidase; and 4) these data further distinguish posterior pituitary PRF from known PRL secretagogues.

UI MeSH Term Description Entries
D007033 Hypothalamus, Middle Middle portion of the hypothalamus containing the arcuate, dorsomedial, ventromedial nuclei, the TUBER CINEREUM and the PITUITARY GLAND. Hypothalamus, Medial,Intermediate Hypothalamic Region,Hypothalamic Region, Intermediate,Hypothalamic Regions, Intermediate,Intermediate Hypothalamic Regions,Medial Hypothalamus,Middle Hypothalamus,Region, Intermediate Hypothalamic,Regions, Intermediate Hypothalamic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

J F Hyde, and N Ben-Jonathan
February 1990, Endocrinology,
J F Hyde, and N Ben-Jonathan
November 1967, Endocrinology,
J F Hyde, and N Ben-Jonathan
October 1987, Canadian journal of physiology and pharmacology,
J F Hyde, and N Ben-Jonathan
April 1966, La Presse medicale,
J F Hyde, and N Ben-Jonathan
October 1972, Endocrinology,
Copied contents to your clipboard!