Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. 2020

T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
Department of Emergency, Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, Shandong, China.

BACKGROUND Clinical research has demonstrated that alprostadil has an anti-inflammatory effect; however, to date, its molecular mechanisms remain unclear. This study aimed to examine the anti-inflammatory activity and related mechanisms of alprostadil in lipopolysaccharide (LPS)-treated H9c2 cells. METHODS Cell morphology was observed under an inverted light microscope, while cell viability was assessed with the 3‑(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assays (ELISA) were conducted to study biochemical indicators of cellular damage, such as released lactate dehydrase (LDH) and troponin, and inflammatory cytokine levels including interleukin-1β (IL-1β), IL-6, IL-17, and tumor necrosis factor-α (TNF-α). The mRNA expression levels of Wnt5a, c‑jun N‑terminal kinase (JNK), and nuclear factor kappa B (NF-κB) were further investigated by real-time quantitative polymerase chain reaction (RT-PCR). The effects of alprostadil on the Wnt5a/JNK/NF-κB pathway in H9c2 cells was examined by Western blotting. RESULTS Alprostadil increased the cell viability of LPS-stimulated H9c2 cells, reduced LDH and troponin production, and attenuated IL-1β, IL-6, IL-17, and TNF-α secretion. Moreover, alprostadil reduced the mRNA expression of Wnt5a, JNK, and NF-κB and decreased the expression of Wnt5a, NF-κB, and the ratio of p‑JNK/JNK in H9c2 cells treated with LPS. The siWnt5a or JNK inhibitor SP600125 significantly augmented the inhibitory effects of alprostadil on the Wnt5a/JNK/NF-κB pathway. CONCLUSIONS Our results show that alprostadil has anti-inflammatory effects and could attenuate LPS-induced injury in H9c2 cardiomyocytes via the Wnt5a/JNK/NF-κB pathway.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071818 Wnt-5a Protein A Wnt protein and ligand for FRIZZLED RECEPTORS that may function as an inhibitor or activator of the WNT SIGNALING PATHWAY. For example, it activates signaling in the presence of Frizzled-4 but is inhibitory when coupled with ROR2 TYROSINE KINASE. It is required for axis formation during EMBRYOGENESIS and inhibits the proliferation, migration, and invasiveness of cancer cells. Wingless-Type MMTV Integration Site Family, Member 5A,Wnt5a Protein,Wingless Type MMTV Integration Site Family, Member 5A,Wnt 5a Protein
D000527 Alprostadil A potent vasodilator agent that increases peripheral blood flow. PGE1,Prostaglandin E1,Caverject,Edex,Lipo-PGE1,Minprog,Muse,PGE1alpha,Prostaglandin E1alpha,Prostavasin,Prostin VR,Prostine VR,Sugiran,Vasaprostan,Viridal,Lipo PGE1
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
November 2022, FEMS microbiology letters,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
January 2023, Journal of ethnopharmacology,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
October 2011, International immunopharmacology,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
October 2017, Molecules (Basel, Switzerland),
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
March 2022, Experimental and therapeutic medicine,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
January 2023, Allergologia et immunopathologia,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
November 2021, BMC neuroscience,
T Yu, and D Dong, and J Guan, and J Sun, and M Guo, and Q Wang
March 2024, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!