[Role of the median forebrain bundle in organizing the electrical activity of the neocortex]. 1979

A Ia Mogilevskiĭ, and D A Romanov

Bilateral coagulation of the forebrain medial bundle in the lateral hypothalamus enhances the formation of spontaneous spindles and facilitates the recruiting response in the neocortex. This combines with a defect of desynchronizing influences of the posterior hypothalamus and the concurrent dominance of synchronizing effects of the preoptic area (PA). PA stimulation enhances the slow wave and spindle activity in the ECoG of the intact brain. After disruption of PA connections with the bulbar synchronizing apparatus the stimulation effect is manifested only in enhanced spindle activity. It is assumed that in addition to hypnogenic influences which PA shares with the parasolitary apparatus, it maintains a definite level of cortical reactivity after the onset of sleep. Elimination of the orbito-frontal cortex, as well as PA coagulation, does not prevent the appearance of spindles in the ECoG of the preparation with an intersected medial bundle, only limiting them to some extent.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D008474 Medial Forebrain Bundle A complex group of fibers arising from the basal olfactory regions, the periamygdaloid region, and the septal nuclei, and passing to the lateral hypothalamus. Some fibers continue into the tegmentum. Median Forebrain Bundle,Bundle, Medial Forebrain,Bundle, Median Forebrain,Bundles, Medial Forebrain,Bundles, Median Forebrain,Forebrain Bundle, Medial,Forebrain Bundle, Median,Forebrain Bundles, Medial,Forebrain Bundles, Median,Medial Forebrain Bundles,Median Forebrain Bundles
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011999 Recruitment, Neurophysiological The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.) Recruitment, Motor Unit,Motor Unit Recruitment,Neurophysiological Recruitment
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms

Related Publications

A Ia Mogilevskiĭ, and D A Romanov
January 1981, Neuroscience and behavioral physiology,
A Ia Mogilevskiĭ, and D A Romanov
April 1988, Biulleten' eksperimental'noi biologii i meditsiny,
A Ia Mogilevskiĭ, and D A Romanov
December 2019, Bioengineered,
A Ia Mogilevskiĭ, and D A Romanov
April 1981, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Ia Mogilevskiĭ, and D A Romanov
January 1976, Progress in brain research,
A Ia Mogilevskiĭ, and D A Romanov
March 1976, Japanese circulation journal,
A Ia Mogilevskiĭ, and D A Romanov
January 1970, Journal of electrocardiology,
A Ia Mogilevskiĭ, and D A Romanov
February 2015, Neuroscience and biobehavioral reviews,
Copied contents to your clipboard!