Characterization of phycobilisome glycoproteins in the cyanobacterium Anacystis nidulans R2. 1988

H C Riethman, and T P Mawhinney, and L A Sherman
Division of Biological Sciences, University of Missouri-Columbia 65211.

Concanavalin A-reactive linker and anchor subunits of phycobilisomes from Anacystis nidulans R2 (H. C. Riethman, T. P. Mawhinney, and L. A. Sherman, FEBS Lett. 215:209-214, 1987) were purified electrophoretically and analyzed for carbohydrate composition and quantity. Different quantities of glucose and N-acetylgalactosamine were found on the concanavalin A-reactive subunits analyzed. Proteolytic analysis of the purified subunits suggested that small regions of the 33- and 27-kilodalton linker polypeptides previously shown to be important for in vitro phycobilisome assembly contained the concanavalin A-reactive carbohydrates present on these subunits. The linker and anchor subunits from the morphologically different phycobilisome of Synechocystis sp. strain PCC6714 were also shown to be concanavalin A reactive. Membranes from iron-starved Anacystis nidulans, which lack assembled phycobilisomes and are associated with glycogen deposits, were shown to be depleted of linker and anchor proteins and to accumulate very large quantities of a concanavalin A-reactive, extrinsic membrane glycoprotein. We suggest that this iron stress-induced glycoprotein is associated with the glycogen deposits on the thylakoid surface and that the glycosylation of phycobilisome linker and anchor subunits is involved in the physiological regulation of phycobilisome assembly and degradation.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting
D045524 Phycobilisomes Light energy harvesting structures attached to the THYLAKOID MEMBRANES of CYANOBACTERIA and RED ALGAE. These multiprotein complexes contain pigments (PHYCOBILIPROTEINS) that transfer light energy to chlorophyll a. Phycobilisome

Related Publications

H C Riethman, and T P Mawhinney, and L A Sherman
October 1988, Plant physiology,
H C Riethman, and T P Mawhinney, and L A Sherman
November 1990, Nucleic acids research,
H C Riethman, and T P Mawhinney, and L A Sherman
April 1984, Journal of bacteriology,
H C Riethman, and T P Mawhinney, and L A Sherman
August 1989, Gene,
H C Riethman, and T P Mawhinney, and L A Sherman
March 1992, The Biochemical journal,
H C Riethman, and T P Mawhinney, and L A Sherman
September 1988, Biochimica et biophysica acta,
H C Riethman, and T P Mawhinney, and L A Sherman
September 1983, Plasmid,
H C Riethman, and T P Mawhinney, and L A Sherman
August 1986, Molecular & general genetics : MGG,
H C Riethman, and T P Mawhinney, and L A Sherman
November 1985, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Copied contents to your clipboard!