Kinetic analysis of the Ca2+-dependent, membrane-bound, macrophage phospholipase A2 and the effects of arachidonic acid. 1988

M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
Department of Chemistry, University of California, San Diego, La Jolla 92093.

The kinetics of the Ca2+-dependent, alkaline pH optimum, membrane-bound phospholipase A2 from the P388D1 macrophage-like cell line were studied using various phosphatidylcholine (PC) and phosphatidylethanolamine (PE) substrates. This enzyme exhibits "surface dilution kinetics" toward PC in Triton X-100 mixed micelles, and the "dual phospholipid model" was found to adequately describe its kinetic behavior. With substrate in the form of sonicated vesicles, the dual phospholipid model should give rise to Michaelis-Menten type kinetics. However, the hydrolysis of dipalmitoyl-PC, 1-palmitoyl-2-oleoyl-PC, and 1-stearoyl-2-arachidonoyl-PC vesicles exhibited two distinct activities. Below 10 microM, the data appeared to follow Michaelis-Menten behavior, while at higher concentrations, the data could best be fit to a Hill equation with a Hill coefficient of 2. These PCs had Vmax values for the low substrate concentration range of 0.2-0.6 nmol min-1 mg-1 and Km values of 1-2 microM. At the high substrate concentration range, the Vmax values were between 5 and 7 nmol min-1 mg-1. PC containing unsaturated fatty acids had an apparent Km, determined from the Hill equation, of about 15 microM, while the apparent Km of dipalmitoyl-PC was 0.6 microM. When 70% glycerol was included in the assays, a single Michaelis-Menten curve was obtained for both dipalmitoyl-PC and 1-stearoyl,2-arachidonoyl-PC. Possible explanations for these kinetic results include reconstitution of the membrane-bound phospholipase A2 in the phospholipid vesicle or the enzyme has tow distinct phospholipid binding function. The kinetics for both dipalmitoyl-PC and dipalmitoyl-PE hydrolysis in vesicles was very similar, indicating that the enzyme does not greatly prefer one of these head groups over the other. The enzyme also showed no preference for arachidonoyl containing phospholipid. Enzymatic activity toward PC containing saturated fatty acids was linear to about 15% hydrolysis while the hydrolysis of PC containing unsaturated fatty acids was linear to only about 5%. This loss of linearity was due to inhibition by released unsaturated fatty acids. Arachidonic acid was found to be a competitive inhibitor of dipalmitoyl PC hydrolysis with a K1 of 5 microM. This tight binding suggests a possible in vivo regulatory role for arachidonic acid. Three compounds of the arachidonic acid cascade, prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2, showed no inhibition of enzymatic activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
September 1988, Biochimica et biophysica acta,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
January 1990, Methods in enzymology,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
January 1990, Advances in prostaglandin, thromboxane, and leukotriene research,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
January 1987, Advances in prostaglandin, thromboxane, and leukotriene research,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
July 1999, The Journal of biological chemistry,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
January 1992, Journal of leukocyte biology,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
January 2007, Oral diseases,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
August 2010, Biochimica et biophysica acta,
M D Lister, and R A Deems, and Y Watanabe, and R J Ulevitch, and E A Dennis
December 2021, Biomedicines,
Copied contents to your clipboard!