Effect of acute ammonia exposure on the glutathione redox system in FFRC strain common carp (Cyprinus carpio L.). 2019

Li-Hong Li, and Hong-Xue Qi
College of Chemistry and Chemical Engineering, Jinzhong University, No.199 Wenhua Road, Yuci, Shanxi, 030619, China. lihongli19821129@163.com.

Ammonia is one of the most common aquatic pollutants. To analyze the effect of ammonia exposure on the glutathione redox system, we investigated the levels of hydrogen peroxide (H2O2) and glutathione, and transcription and activities of glutathione-related enzymes in liver and gills of FFRC strain common carp (Cyprinus carpio L.) exposed to 0, 10, 20, and 30 mg/L of ammonia. The results showed that H2O2 content reached a maximum level at 48 h of exposure in the liver of fish. In gills, H2O2 increased rapidly at 6 h and reached to maximum levels at 24 h of exposure, indicating that gills experienced oxidative stress earlier than the liver of fish exposed to ammonia. Reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio increased significantly within 24 h of exposure. Meanwhile, the transcription and activities of glutathione S-transferase (GST) and glutathione reductase (GR) increased significantly in the liver, and glutathione peroxidase (GSH-Px) and GST increased in the gills of fish exposed to ammonia. Malondialdehyde (MDA) content kept at a low level after exposure to low concentration of ammonia, but increased significantly after exposure to 30 mg/L ammonia for 48 h along with a decrease in GSH content and GSH/GSSG ratio. These data showed that the glutathione redox system played an important role in protection against ammonia-induced oxidative stress in the liver and gills of FFRC strain common carp, though the defense capacity was not able to completely prevent oxidative damage occurring after exposure to higher concentration of ammonia. This research systematically studied the response of the glutathione redox system to ammonia stress and would provide novel information for a better understanding of the adaptive mechanisms of fish to environmental stress.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D005880 Gills Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment. Gill
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen

Related Publications

Li-Hong Li, and Hong-Xue Qi
January 2013, Neuro endocrinology letters,
Li-Hong Li, and Hong-Xue Qi
January 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
Li-Hong Li, and Hong-Xue Qi
December 2016, Neuro endocrinology letters,
Li-Hong Li, and Hong-Xue Qi
December 2013, Fish physiology and biochemistry,
Li-Hong Li, and Hong-Xue Qi
January 1979, Acta anatomica,
Li-Hong Li, and Hong-Xue Qi
January 2015, Neuro endocrinology letters,
Li-Hong Li, and Hong-Xue Qi
January 2006, Developmental and comparative immunology,
Li-Hong Li, and Hong-Xue Qi
March 2018, The Science of the total environment,
Li-Hong Li, and Hong-Xue Qi
April 2004, Bulletin of environmental contamination and toxicology,
Li-Hong Li, and Hong-Xue Qi
March 2022, Trends in genetics : TIG,
Copied contents to your clipboard!