Developmental changes in ganglioside composition and synthesis in embryonic rat brain. 1988

R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
Department of Neurology, Yale University School of Medicine, New Haven, CT 06510.

Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.

UI MeSH Term Description Entries
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005679 G(M3) Ganglioside A ganglioside present in abnormally large amounts in the brain and liver due to a deficient biosynthetic enzyme, G(M3):UDP-N-acetylgalactosaminyltransferase. Deficiency of this enzyme prevents the formation of G(M2) ganglioside from G(M3) ganglioside and is the cause of an anabolic sphingolipidosis. Hematoside,Sialyllactosylceramide,Ganglioside GM3,II3NeuAcLacCer,Sialyl Lactosylceramide,GM3, Ganglioside,Lactosylceramide, Sialyl
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000094802 beta-D-Galactoside alpha 2-6-Sialyltransferase Sialyltransferases that catalyze the transfer of N-ACETYLNEURAMINIC ACID from CYTIDINE MONOPHOSPHATE N-ACETYLNEURAMINIC ACID to the 6-OH of the GALACTOSE residue of N-GLYCANS. CMP-Acetylneuraminate Galactoside (alpha 2-6)-Sialyltransferase,CMP-N-Acetylneuraminate-Galactosylglycoprotein Sialyltransferase ST6GAL,CMP-N-Acetylneuraminate-beta-Galactoside alpha-2,6-Sialyltransferase,CMP-N-Acetylneuraminic Acid-Lactose Sialytransferase,CMP-NeuAc-Galactoside (alpha 2-6)-Sialyltransferase,CMP-Sialic Acid-N-Acetyllactosaminide alpha (2-6)-Sialyltransferase,Gal-1-4-GlcNAc alpha(2-6)-Sialyltransferase,alpha 2-6-Sialyltransferase,alpha2,6(N) Sialyltransferase,alpha6-Sialyltransferase,beta-D-Galactoside alpha-2-6-Sialyltransferase,beta-Galactoside alpha2,6-Sialyltransferase,beta-Galactosyl(1-4)N-Acetylglucosaminide alpha(2-6)-Sialyltransferase,Gal-GlcNAc(2-6)-sialyltransferase,SIAT-1,ST6(N),ST6Gal I,ST6Gal-1,2-6-Sialyltransferase, alpha,2-6-Sialyltransferase, beta-D-Galactoside alpha,Acid-Lactose Sialytransferase, CMP-N-Acetylneuraminic,CMP N Acetylneuraminate Galactosylglycoprotein Sialyltransferase ST6GAL,CMP N Acetylneuraminate beta Galactoside alpha 2,6 Sialyltransferase,CMP N Acetylneuraminic Acid Lactose Sialytransferase,SIAT 1,ST6GAL, CMP-N-Acetylneuraminate-Galactosylglycoprotein Sialyltransferase,ST6Gal 1,Sialyltransferase ST6GAL, CMP-N-Acetylneuraminate-Galactosylglycoprotein,Sialytransferase, CMP-N-Acetylneuraminic Acid-Lactose,alpha 2 6 Sialyltransferase,alpha 2-6-Sialyltransferase, beta-D-Galactoside,alpha-2,6-Sialyltransferase, CMP-N-Acetylneuraminate-beta-Galactoside,alpha-2-6-Sialyltransferase, beta-D-Galactoside,alpha2,6-Sialyltransferase, beta-Galactoside,alpha6 Sialyltransferase,beta D Galactoside alpha 2 6 Sialyltransferase,beta Galactoside alpha2,6 Sialyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012799 Sialyltransferases A group of enzymes with the general activity CMP-N-acetylneuraminate:acceptor N-acetylneuraminyl transferase. They catalyze the transfer of N-ACETYLNEURAMINIC ACID from CMP-N-ACETYLNEURAMINIC ACID to an acceptor, which is usually the terminal sugar residue of an oligosaccharide, a glycoprotein, or a glycolipid. Glycoprotein Sialyltransferases,Glycosyltransferase Family 29,Sialyltransferase,Ectosialyltransferase,Glycoprotein Sialyltransferase,Sialyltransferase, Glycoprotein,Sialyltransferases, Glycoprotein
D017350 N-Acetylgalactosaminyltransferases Enzymes that catalyze the transfer of N-acetylgalactosamine from a nucleoside diphosphate N-acetylgalactosamine to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. N-Acetylgalactosamine Transferases,N Acetylgalactosamine Transferases,N Acetylgalactosaminyltransferases,Transferases, N-Acetylgalactosamine

Related Publications

R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
April 1973, Journal of neurochemistry,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
February 2002, Archives of biochemistry and biophysics,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
November 1995, Brain research,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
April 1989, Neuroscience research,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
May 1992, The Journal of biological chemistry,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
May 1984, Journal of neurochemistry,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
July 1997, Glycobiology,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
February 2001, Archives of biochemistry and biophysics,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
January 1991, Journal of neurochemistry,
R K Yu, and L J Macala, and T Taki, and H M Weinfield, and F S Yu
January 1979, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!