Prediction of Tissue-Plasma Partition Coefficients Using Microsomal Partitioning: Incorporation into Physiologically based Pharmacokinetic Models and Steady-State Volume of Distribution Predictions. 2019

Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania.

Drug distribution is a necessary component of models to predict human pharmacokinetics. A new membrane-based tissue-plasma partition coefficient (K p) method (K p,mem) to predict unbound tissue to plasma partition coefficients (K pu) was developed using in vitro membrane partitioning [fraction unbound in microsomes (f um)], plasma protein binding, and log P The resulting K p values were used in a physiologically based pharmacokinetic (PBPK) model to predict the steady-state volume of distribution (V ss) and concentration-time (C-t) profiles for 19 drugs. These results were compared with K p predictions using a standard method [the differential phospholipid K p prediction method (K p,dPL)], which differentiates between acidic and neutral phospholipids. The K p,mem method was parameterized using published rat K pu data and tissue lipid composition. The K pu values were well predicted with R 2 = 0.8. When used in a PBPK model, the V ss predictions were within 2-fold error for 12 of 19 drugs for K p,mem versus 11 of 19 for Kp,dPL With one outlier removed for K p,mem and two for K p,dPL, the V ss predictions for R 2 were 0.80 and 0.79 for the K p,mem and K p,dPL methods, respectively. The C-t profiles were also predicted and compared. Overall, the K p,mem method predicted the V ss and C-t profiles equally or better than the K p,dPL method. An advantage of using f um to parameterize membrane partitioning is that f um data are used for clearance prediction and are, therefore, generated early in the discovery/development process. Also, the method provides a mechanistically sound basis for membrane partitioning and permeability for further improving PBPK models. SIGNIFICANCE STATEMENT: A new method to predict tissue-plasma partition coefficients was developed. The method provides a more mechanistic basis to model membrane partitioning.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
April 1982, Journal of pharmaceutical sciences,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
February 1979, Journal of pharmacokinetics and biopharmaceutics,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
September 2002, The Journal of pharmacy and pharmacology,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
June 1982, International journal of clinical pharmacology, therapy, and toxicology,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
August 2012, Journal of pharmacokinetics and pharmacodynamics,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
August 1981, Journal of pharmaceutical sciences,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
October 2013, Xenobiotica; the fate of foreign compounds in biological systems,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
October 1997, Toxicology in vitro : an international journal published in association with BIBRA,
Kimberly Holt, and Min Ye, and Swati Nagar, and Ken Korzekwa
January 2000, Journal of pharmaceutical sciences,
Copied contents to your clipboard!