Lack of TdT and immunoglobulin and T-cell receptor gene rearrangements in Hodgkin's disease. 1987

A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
Centro Studi di Fisiologia del Lavoro Muscolare, CNR, Milano, Italy.

To study the pathogenesis of Hodgkin's disease (HD), which today remains obscure, we have undertaken a combined experimental approach: determination of TdT and molecular analysis of rearrangements of immunoglobulin heavy chain (IgH), T-cell receptor (TCR) beta chain and the T-cell rearranging gamma (TRG) genes. TdT determination indicate would the presence of immature cells that are not detected in the normal lymphnode; molecular analysis of the rearrangements of these genes would reveal the presence of even a small monoclonal population of both T and B lineages in the lymphnodes. We believe that the combination of these two types of analysis can indicate whether an expanding lymphoid clone is responsible for this disease. TdT determination was negative in all 41 cases tested. Gene rearrangements were studied in 10 cases for IgH and TCR beta genes and in 5 cases for the TRG gene. No abnormal band beside the germ-line ones was detected in any of our cases, ruling out the presence of a minor neoplastic population. We can explain these results in at least three ways: first, the neoplastic population could represent less than 1% of the total, thus escaping detection by current techniques; second, the neoplastic population is not lymphoid in nature or is composed of mature cells that do not rearrange Ig and TCR genes and therefore belongs to a true non-B, non-T lineage; third, the pathogenesis of HD is completely different from that of non-Hodgkin's lymphomas (NHL) and does not involve the clonal expansion of a cell frozen at a particular maturative stage as is thought to happen in most NHL.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D004253 DNA Nucleotidylexotransferase A non-template-directed DNA polymerase normally found in vertebrate thymus and bone marrow. It catalyzes the elongation of oligo- or polydeoxynucleotide chains and is widely used as a tool in the differential diagnosis of acute leukemias in man. EC 2.7.7.31. Terminal Addition Enzyme,Terminal Deoxyribonucleotidyltransferase,Deoxynucleotidyl Transferase,Deoxynucleotidyltransferase,Desoxynucleotidyl Transferase,Desoxynucleotidyltransferase,Tdt Antigen,Terminal Deoxynucleotidyl Transferase,Terminal Deoxyribonucleotidyl Transferase,Addition Enzyme, Terminal,Antigen, Tdt,Deoxynucleotidyl Transferase, Terminal,Deoxyribonucleotidyl Transferase, Terminal,Deoxyribonucleotidyltransferase, Terminal,Enzyme, Terminal Addition,Nucleotidylexotransferase, DNA,Transferase, Deoxynucleotidyl,Transferase, Desoxynucleotidyl,Transferase, Terminal Deoxynucleotidyl,Transferase, Terminal Deoxyribonucleotidyl
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D006689 Hodgkin Disease A malignant disease characterized by progressive enlargement of the lymph nodes, spleen, and general lymphoid tissue. In the classical variant, giant usually multinucleate Hodgkin's and REED-STERNBERG CELLS are present; in the nodular lymphocyte predominant variant, lymphocytic and histiocytic cells are seen. Granuloma, Hodgkin,Granuloma, Malignant,Hodgkin Lymphoma,Lymphogranuloma, Malignant,Granuloma, Hodgkin's,Granuloma, Hodgkins,Hodgkin Lymphoma, Adult,Hodgkin's Disease,Hodgkin's Lymphoma,Hodgkins Disease,Lymphocyte Depletion Hodgkin's Lymphoma,Lymphocyte-Rich Classical Hodgkin's Lymphoma,Mixed Cellularity Hodgkin's Lymphoma,Nodular Lymphocyte-Predominant Hodgkin's Lymphoma,Nodular Sclerosing Hodgkin's Lymphoma,Adult Hodgkin Lymphoma,Disease, Hodgkin,Disease, Hodgkin's,Disease, Hodgkins,Hodgkin Granuloma,Hodgkin's Granuloma,Hodgkins Granuloma,Hodgkins Lymphoma,Lymphocyte Rich Classical Hodgkin's Lymphoma,Lymphogranulomas, Malignant,Lymphoma, Hodgkin,Lymphoma, Hodgkin's,Malignant Granuloma,Malignant Granulomas,Malignant Lymphogranuloma,Malignant Lymphogranulomas,Nodular Lymphocyte Predominant Hodgkin's Lymphoma
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
January 1989, Acta haematologica,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
July 1988, Cancer research,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
January 1990, Leukemia research,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
August 1988, Zhonghua yi xue za zhi = Chinese medical journal; Free China ed,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
November 2001, Archives of dermatology,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
October 1986, Human pathology,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
July 1990, The Journal of pathology,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
January 2012, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
January 1990, Haematology and blood transfusion,
A Villa, and G Cairo, and M R Pozzi, and L Schiaffonati, and L Bardella, and R Lucchini, and D Delia, and C Besana, and I Biunno, and P Vezzoni
February 1987, Australian and New Zealand journal of medicine,
Copied contents to your clipboard!