Effect of opiate antagonists on middle cerebral artery occlusion infarct in the rat. 1988

W G Obana, and L H Pitts, and M C Nishimura
Department of Neurological Surgery, School of Medicine, University of California, San Francisco.

The authors examined the effect of the opiate antagonists naloxone and thyrotropin-releasing hormone (TRH) on neurological outcome and the size of areas of cerebral infarction in a rat model of focal cerebral ischemia. The middle cerebral artery (MCA) was permanently occluded in 66 adult Sprague-Dawley rats. The rats were randomly divided into three groups. In 20 Group I rats, TRH in normal saline was administered initially as a 2-mg/kg bolus followed by continuous infusion of 2 mg/kg/hr for 4 hours. In 20 Group II rats, naloxone in normal saline was administered initially as a 2-mg/kg bolus followed by continuous infusion of 2-mg/kg/hr for 4 hours. In 26 Group III rats, physiological saline was administered as an initial 0.5-cc bolus followed by continuous infusion of 0.5 cc/hr for 4 hours. All solutions were given in volumes of 0.5 cc for the bolus and 0.5 cc/hr for continuous infusion, and all infusions were begun within 10 minutes of MCA occlusion. Twenty-four hours after treatment, the rats underwent a careful neurological examination and were then sacrificed immediately. The size of areas of cerebral infarction was evaluated using 2,3,5-triphenyltetrazolium chloride staining techniques. The neurological grade of the rats correlated with the size of infarcted areas among all grades, irrespective of treatment (p less than 0.01). Neither naloxone nor TRH improved neurological function or reduced the size of infarction compared to saline-treated control rats. Treatment with TRH caused a significant increase in mean arterial blood pressure during infusion, but naloxone had no effect. These results suggest that neither TRH nor naloxone are effective in the treatment of acute focal cerebral ischemia.

UI MeSH Term Description Entries
D008297 Male Males
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001157 Arterial Occlusive Diseases Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency. Arterial Obstructive Diseases,Arterial Occlusion,Arterial Obstructive Disease,Arterial Occlusions,Arterial Occlusive Disease,Disease, Arterial Obstructive,Disease, Arterial Occlusive,Obstructive Disease, Arterial,Occlusion, Arterial,Occlusive Disease, Arterial

Related Publications

W G Obana, and L H Pitts, and M C Nishimura
November 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
W G Obana, and L H Pitts, and M C Nishimura
July 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
W G Obana, and L H Pitts, and M C Nishimura
February 1993, The American journal of pathology,
W G Obana, and L H Pitts, and M C Nishimura
January 1997, Acta neurochirurgica. Supplement,
W G Obana, and L H Pitts, and M C Nishimura
January 2006, Cerebrovascular diseases (Basel, Switzerland),
W G Obana, and L H Pitts, and M C Nishimura
January 1982, Stroke,
W G Obana, and L H Pitts, and M C Nishimura
January 1983, Stroke,
Copied contents to your clipboard!