The Anti-Inflammatory Effect of Sulforaphane in Mice with Experimental Autoimmune Encephalomyelitis. 2019

Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.

BACKGROUND Multiple sclerosis (MS) is an immune-associated inflammatory disorder of the central nervous system and results in serious disability. Although many disease-modifying therapy drugs have been developed, these drugs have shown limited clinical efficacy and some adverse effects in previous studies, therefore, there has been reasonable need for less harmful and cost-effective therapeutics. Herein, we tested the anti-inflammatory effect of sulforaphane (SFN) in a mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS The EAE mice were randomly assigned into two experimental groups: the phosphate-buffered saline (PBS)-treated EAE group and SFN-treated EAE group. After EAE mice induction by auto-immunization against the myelin oligodendrocyte glycoprotein peptide, we evaluated EAE symptom scores and biochemical analyses such as infiltration of inflammatory cells and demyelination of the spinal cord. Furthermore, western blotting was performed using the spinal cords of EAE mice. RESULTS In the behavioral study, the SFN-treated EAE mice showed favorable clinical scores compared with PBS-treated EAE mice at the 13th day (1.30 ± 0.15 vs. 1.90 ± 0.18; P = 0.043) and 14th day (1.80 ± 0.13 vs. 2.75 ± 0.17; P = 0.003). Additionally, the biochemical studies revealed that SFN treatment inhibited the inflammatory infiltration, demyelinating injury of the spinal cords, and the up-regulation of inducible nitric oxide synthase in the EAE mice. CONCLUSIONS The SFN treatment showed anti-inflammatory and anti-oxidative effects in the EAE mice. Conclusively, this study suggests that SFN has neuroprotective effects via anti-inflammatory processing, so it could be a new therapeutic or nutritional supplement for MS.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002584 Cervix Uteri The neck portion of the UTERUS between the lower isthmus and the VAGINA forming the cervical canal. Cervical Canal of the Uterus,Cervical Canal, Uterine,Ectocervix,Endocervical Canal,Endocervix,External Os Cervix,External Os of the Cervix,Uterine Cervical Canal,Cervix,Cervixes,Uterine Cervix,Canal, Endocervical,Canal, Uterine Cervical,Cervix, External Os,Cervix, Uterine,Endocervical Canals,Uterine Cervical Canals
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013454 Sulfoxides Organic compounds that have the general formula R-SO-R. They are obtained by oxidation of mercaptans (analogous to the ketones). (From Hackh's Chemical Dictionary, 4th ed)
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
October 2013, Neuropharmacology,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
September 2017, Journal of Korean medical science,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
May 2012, The International journal of neuroscience,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
January 2021, Endocrine, metabolic & immune disorders drug targets,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
September 2012, International immunopharmacology,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
January 2017, Folia neuropathologica,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
March 2013, Immunobiology,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
November 2013, Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology,
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
January 2016, Methods in molecular biology (Clifton, N.J.),
Il Han Yoo, and Myung Jin Kim, and Jiyoung Kim, and Jung Joon Sung, and Sung Taek Park, and Suk Won Ahn
January 2014, Neurochemistry international,
Copied contents to your clipboard!