Leishmania species-dependent functional duality of toll-like receptor 2. 2019

Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.

Toll-like receptors (TLRs) are a subset of pattern recognition receptors (PRR) in innate immunity and act as a connecting link between innate and adaptive immune systems. During Leishmania infection, the activation of TLRs influences the pathogen-specific immune responses, which may play a decisive role in determining the outcome of infection, toward elimination or survival of the pathogen. Antigen-presenting cells (APCs) of the innate immune system such as macrophages, dendritic cells (DCs), neutrophils, natural killer (NK) cells, and NKT cells express TLR2, which plays a crucial role in the parasite recognition and elicitation of immune responses in Leishmania infection. Depending on the infecting Leishmania species, the TLR2 pathways may result in a host-protective or a disease-exacerbating response. While Leishmania major and Leishmania donovani infections trigger TLR2-related host-protective and non-protective immune responses, Leishmania mexicana and Leishmania infantum infections are reported to elicit TLR2-mediated host-protective responses and Leishmania amazonensis and Leishmania braziliensis infections are reported to evoke a disease-exacerbating response. These findings illustrate that TLR2-related effector functions are diverse and may be exerted in a species- or strain-dependent manner. TLR2 agonists or antagonists may have therapeutic potentials to trigger the desired immune response during leishmaniasis. In this review, we discuss the TLR2-related immune responses during leishmaniasis and highlight the novel insights into the possible role of TLR2-driven resistance or susceptibility to Leishmania.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D007896 Leishmaniasis A disease caused by any of a number of species of protozoa in the genus LEISHMANIA. There are four major clinical types of this infection: cutaneous (Old and New World) (LEISHMANIASIS, CUTANEOUS), diffuse cutaneous (LEISHMANIASIS, DIFFUSE CUTANEOUS), mucocutaneous (LEISHMANIASIS, MUCOCUTANEOUS), and visceral (LEISHMANIASIS, VISCERAL). Leishmania Infection,Infection, Leishmania,Infections, Leishmania,Leishmania Infections,Leishmaniases
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000977 Antiparasitic Agents Drugs used to treat or prevent parasitic infections. Antiparasitic,Antiparasitic Agent,Antiparasitic Drug,Parasiticide,Parasiticides,Antiparasitic Drugs,Antiparasitics,Agent, Antiparasitic,Agents, Antiparasitic,Drug, Antiparasitic,Drugs, Antiparasitic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
August 2003, Molecular and biochemical parasitology,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
September 2023, Cytokine,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
April 2018, Parasite immunology,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
February 2010, Experimental parasitology,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
October 2016, Infection and immunity,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
December 2002, Journal of dermatological science,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
January 2006, Journal of endotoxin research,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
January 2017, Frontiers in microbiology,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
January 2014, Allergy and asthma proceedings,
Abdollah Jafarzadeh, and Maryam Nemati, and Iraj Sharifi, and Arathi Nair, and Divanshu Shukla, and Prashant Chauhan, and Hossain Khorramdelazad, and Arup Sarkar, and Bhaskar Saha
March 2005, Infection and immunity,
Copied contents to your clipboard!