Multiplicity of functions for the otu gene products during Drosophila oogenesis. 1988

P D Storto, and R C King
Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208.

The ovarian tumor gene behaves as if it encodes a product (OGP), which is required during several early steps in the transformation of oogonia into functional oocytes. Seventeen ethyl methane sulfonate-induced mutations have been studied, and their mutant phenotypes can be explained as graded responses by individual germ cells to different levels of OGP synthesized by the mutant germ cells themselves. The lowest and highest levels of OGP appear to be produced by otu10 and otu14, respectively. The 15 mutants with intermediate OGP levels are temperature sensitive; subnormal temperatures improve ovarian development, while above-normal temperatures suppress it. A subgroup of these mutants are unable to form a system of actin microfilament bundles in the cortical cytoplasm of their nurse cells during stage 10B, and these defective nurse cells are unable to transport their cytoplasm to the oocyte, as normally happens between stages 10B and 12. In addition to its role in the actin-mediated transport of nurse cell cytoplasm, OGP also appears to alter the morphology of giant polytene chromosomes, which form as the nurse cells undergo endocycles of DNA replication. Genetic evidence suggests that otu also encodes a second product (SP) that is utilized late in oogenesis. SP is required for the synthesis in the ooplasm of glycogen-rich, beta yolk spheres. Products of the otu gene also play a vital but unknown role in embryogenesis.

UI MeSH Term Description Entries
D007247 Infertility, Female Diminished or absent ability of a female to achieve conception. Sterility, Female,Sterility, Postpartum,Sub-Fertility, Female,Subfertility, Female,Female Infertility,Female Sterility,Female Sub-Fertility,Female Subfertility,Postpartum Sterility,Sub Fertility, Female
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes

Related Publications

P D Storto, and R C King
October 1994, Science (New York, N.Y.),
P D Storto, and R C King
April 1982, Nature,
P D Storto, and R C King
November 1993, Proceedings of the National Academy of Sciences of the United States of America,
P D Storto, and R C King
January 1994, Genetica,
P D Storto, and R C King
February 1995, Mechanisms of development,
P D Storto, and R C King
August 2011, Dong wu xue yan jiu = Zoological research,
P D Storto, and R C King
May 1985, Proceedings of the National Academy of Sciences of the United States of America,
P D Storto, and R C King
April 2001, Genesis (New York, N.Y. : 2000),
Copied contents to your clipboard!