Roles and Regulation of Long Noncoding RNAs in Hepatocellular Carcinoma. 2019

Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Next-generation sequencing has uncovered thousands of long noncoding RNAs (lncRNA). Many are reported to be aberrantly expressed in various cancers, including hepatocellular carcinoma (HCC), and play key roles in tumorigenesis. This review provides an in-depth discussion of the oncogenic mechanisms reported to be associated with deregulated HCC-associated lncRNAs. Transcriptional expression of lncRNAs in HCC is modulated through transcription factors, or epigenetically by aberrant histone acetylation or DNA methylation, and posttranscriptionally by lncRNA transcript stability modulated by miRNAs and RNA-binding proteins. Seventy-four deregulated lncRNAs have been identified in HCC, of which, 52 are upregulated. This review maps the oncogenic roles of these deregulated lncRNAs by integrating diverse datasets including clinicopathologic features, affected cancer phenotypes, associated miRNA and/or protein-interacting partners as well as modulated gene/protein expression. Notably, 63 deregulated lncRNAs are significantly associated with clinicopathologic features of HCC. Twenty-three deregulated lncRNAs associated with both tumor and metastatic clinical features were also tumorigenic and prometastatic in experimental models of HCC, and eight of these mapped to known cancer pathways. Fifty-two upregulated lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer, whereas 22 downregulated lncRNAs have tumor-suppressive properties. Aberrantly expressed lncRNAs in HCC exert pleiotropic effects on miRNAs, mRNAs, and proteins. They affect multiple cancer phenotypes by altering miRNA and mRNA expression and stability, as well as through effects on protein expression, degradation, structure, or interactions with transcriptional regulators. Hence, these insights reveal novel lncRNAs as potential biomarkers and may enable the design of precision therapy for HCC.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic

Related Publications

Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
September 2016, Virus research,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
March 2021, International journal of molecular sciences,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
January 2015, BioMed research international,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
February 2015, Gastroenterology,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
April 2020, Molecular cancer,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
October 2021, Seminars in cancer biology,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
November 2021, World journal of clinical cases,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
December 2023, Cancer innovation,
Lee Jin Lim, and Samuel Y S Wong, and Feiyang Huang, and Sheng Lim, and Samuel S Chong, and London Lucien Ooi, and Oi Lian Kon, and Caroline G Lee
January 2017, Biomarkers in cancer,
Copied contents to your clipboard!