The mechanism of glycogen synthetase as determined by deuterium isotope effects and positional isotope exchange experiments. 1988

S C Kim, and A N Singh, and F M Raushel
Department of Chemistry, Texas A&M University, College Station 77843-3255.

The reaction mechanism for glycogen synthetase from rabbit muscle was examined by alpha-secondary deuterium isotope effects and positional exchange experiments. Incubation of glycogen synthetase with [beta-18O2,alpha beta-18O]UDP-Glc did not result in any detectable positional isotope exchange from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. Glucono-1,5-lactone was found to be a noncompetitive inhibitor versus UDP-Glc. The kinetic constants, K(is) and K(ii), were found to be 91 +/- 4 microM and 0.70 +/- 0.09 mM, respectively. Deoxynojirimycin was a nonlinear inhibitor at pH 7.5. The alpha-secondary deuterium isotope effects were measured with [1-2H]UDP-Glc by the direct comparison method. The isotope effects on Vmax and Vmax/K were found to be 1.23 +/- 0.04 and 1.09 +/- 0.06, respectively. The inhibitory effects by glucono-lactone and deoxynojirimycon plus the large alpha-secondary isotope effect on Vmax have been interpreted to show that an oxocarbonium ion is an intermediate in this reaction mechanism. The lack of a detectable positional isotope exchange reaction in the absence of glycogen suggests the formation of a rigid tight ion pair between UDP and the oxocarbonium ion intermediate.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010103 Oxygen Isotopes Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes. Oxygen Isotope,Isotope, Oxygen,Isotopes, Oxygen
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S C Kim, and A N Singh, and F M Raushel
October 1984, The Journal of biological chemistry,
S C Kim, and A N Singh, and F M Raushel
February 1987, The Journal of biological chemistry,
S C Kim, and A N Singh, and F M Raushel
May 2003, Biochemistry,
S C Kim, and A N Singh, and F M Raushel
October 2004, Angewandte Chemie (International ed. in English),
S C Kim, and A N Singh, and F M Raushel
January 1981, Biochemistry,
Copied contents to your clipboard!