Quantitative Analysis of Underivatized Amino Acids by Liquid Chromatography-Tandem Mass Spectrometry. 2019

Justin Mak, and Tina M Cowan, and Anthony Le
Biochemical Genetics Laboratory, Stanford Health Care, Palo Alto, CA, USA.

Quantitative amino acid analysis has diverse applications in clinical diagnostics, biomedical research, and agriculture. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) enables more rapid and specific detection of amino acids in comparison to traditional, gold-standard ninhydrin-based methods. However, triple quadrupole mass spectrometers are unable to definitively differentiate isomers and are susceptible to ion suppression, both of which prevent accurate quantitation. Therefore, appropriate chromatography must be applied before ionization.We have shown that two-dimensional LC enables rapid and specific amino acid quantitation without derivatization by resolving isomers, such as alloisoleucine, isoleucine, and leucine, and reducing matrix effects (Le et al., J Chromatogr B Analyt Technol Biomed Life Sci 944:166-174, 2014). In this clinically validated protocol, we provide an updated description of the chromatographic setup and selected reaction monitoring (SRM) transitions. Then, we describe sample processing for serum, plasma, urine, cerebral spinal fluid, and dried blood spots. Most importantly, we outline a singular quantitative design for efficient data analysis of the listed sample types and quality assurance strategies to ensure test fidelity. Lastly, we share extensive knowledge critical to the success of this method. A liquid sample can be processed and be ready for injection within 5 min, and each sample is analyzed by the MS in 14.5 min.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem

Related Publications

Justin Mak, and Tina M Cowan, and Anthony Le
January 2014, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Justin Mak, and Tina M Cowan, and Anthony Le
September 2023, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Justin Mak, and Tina M Cowan, and Anthony Le
January 2012, Methods in molecular biology (Clifton, N.J.),
Justin Mak, and Tina M Cowan, and Anthony Le
January 2019, Methods in molecular biology (Clifton, N.J.),
Justin Mak, and Tina M Cowan, and Anthony Le
November 2007, Journal of pharmaceutical and biomedical analysis,
Copied contents to your clipboard!