Aminoglycoside resistance among Pseudomonas aeruginosa isolates with an unusual disk diffusion antibiogram. 1988

R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
Department of Medical Microbiology, Creighton University School of Medicine, Omaha, Nebraska 68178.

In recent years, a number of clinical microbiology laboratories have isolated Pseudomonas aeruginosa with the unusual aminoglycoside disk diffusion result of resistance to both amikacin and gentamicin but susceptibility to tobramycin (ArGrTs). A total of 39 isolates of P. aeruginosa reported to have this resistance pattern were retested by the standard National Committee for Clinical Laboratory Standards disk diffusion procedure; 30 strains (77%) were confirmed to be ArGrTs. These 30 isolates were further examined for susceptibility to those aminoglycosides by agar dilution and broth micro- and macrodilution methods. Only 27, 27, and 23% of the isolates appeared to be ArGrTs by agar, broth microdilution, and broth macrodilution testing, respectively. Most of the remaining isolates were resistant to all three aminoglycosides when tested by broth dilution and resistant only to gentamicin when tested by agar dilution. The percentages of strains resistant to any particular aminoglycoside by agar dilution, broth microdilution, and broth macrodilution, respectively, were 43, 80, and 70 for amikacin, 97, 93, and 100 for gentamicin, 100, 100, and 100 for netilmicin, 30, 87, and 93 for sisomicin, and 13, 57, and 50 for tobramycin. These results indicate that strains showing the unusual aminoglycoside antibiogram are less susceptible to aminoglycosides in general and should probably be considered borderline resistant to all aminoglycosides. The efficacy of aminoglycosides in the treatment of infections produced by these strains is unknown.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005839 Gentamicins A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS. Gentamicin Sulfate (USP),Gentamycin,G-Myticin,Garamycin,Gentacycol,Gentamicin,Gentamicin Sulfate,Gentamycins,Gentavet,Genticin,G Myticin,GMyticin,Sulfate, Gentamicin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000583 Amikacin A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics. A.M.K,Amikacin Sulfate,Amikacina Medical,Amikacina Normon,Amikafur,Amikalem,Amikason's,Amikayect,Amikin,Amiklin,Amukin,BB-K 8,BB-K8,Biclin,Biklin,Gamikal,Kanbine,Oprad,Yectamid,BB K 8,BB K8,BBK 8,BBK8,Medical, Amikacina,Normon, Amikacina,Sulfate, Amikacin
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D014031 Tobramycin An aminoglycoside, broad-spectrum antibiotic produced by Streptomyces tenebrarius. It is effective against gram-negative bacteria, especially the PSEUDOMONAS species. It is a 10% component of the antibiotic complex, NEBRAMYCIN, produced by the same species. Nebramycin Factor 6,Brulamycin,Nebcin,Nebicin,Obracin,Tobracin,Tobramycin Sulfate,Sulfate, Tobramycin

Related Publications

R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 1990, Medical microbiology and immunology,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 2016, Revista do Instituto de Medicina Tropical de Sao Paulo,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
February 2005, Antimicrobial agents and chemotherapy,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
July 2006, Diagnostic microbiology and infectious disease,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 1995, Infection,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 2021, Advances in experimental medicine and biology,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 2000, Zentralblatt fur Bakteriologie : international journal of medical microbiology,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
October 2005, The Indian journal of medical research,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
January 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
R B Clark, and C C Sanders, and C B Pakiz, and M K Hostetter
November 1974, The Journal of infectious diseases,
Copied contents to your clipboard!