Isotope dilution LC/ESI--MS-MS quantitation of urinary 1,4-bis(N-acetyl-S-cysteinyl)-2-butanone in mice and rats as the biomarker of 1-chloro-2-hydroxy-3-butene, an in vitro metabolite of 1,3-butadiene. 2019

Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.

1-Chloro-2-hydroxy-3-butene (CHB) is a possible metabolite of 1,3-butadiene, a carcinogenic air pollutant. To demonstrate its formation in vivo, it is desirable to develop a practical biomarker and the corresponding analysis method. CHB can undergo alcohol dehydrogenase- and cytochromes P450 enzymes (P450)-mediated oxidation to yield 1-chloro-3-buten-2-one (CBO), which readily forms glutathione conjugates. We hypothesized that CBO-derived mercapturic acids, which are the expected biotransformed products of CBO-glutathione conjugates, could be used as CHB biomarkers. Thus, in the present study, we investigated the in vivo biotransformation of CHB into CBO-derived mercapturic acids. Because the reaction of CBO with N-acetyl-l-cysteine yields two products, 1,4-bis(N-acetyl-S-cysteinyl)-2-butanone (NC1) and 1-chloro-4-(N-acetyl-S-cysteinyl)-2-butanone (NC2), we first developed an isotope dilution LC/ESI--MS-MS method to quantitate urinary NC1 and NC2, and then determined their concentrations in urine of C57BL/6 mice and Sprague-Dawley rats administered CHB. Since no NC2 was detected in samples, the LC/ESI--MS-MS method was optimized specifically for NC1. NC1 was enriched through solid phase extraction with the recovery being 75-82%. The limits of detection and quantitation were 6.8 and 34 fmol/0.1 mL for mouse urine, and 4.5 and 7.1 fmol/0.1 mL for rat urine, respectively. In urine of animals before CHB administration, no NC1 was detected; in mice administered CHB at 10 and 30 mg/kg, and rats at 5 and 15 mg/kg, NC1 was detected and its concentrations in urine from animals given higher doses were 3-6 fold higher than those given lower doses. Moreover, the NC1 concentrations in urine during 0-8 h were 4-6 fold and 10-11 fold higher than those during 8-24 h for mice and rats, respectively. The results demonstrated that CHB could be in vivo biotransformed into NC1, which could be used as a practical CHB biomarker.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000393 Air Pollutants Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or materials. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS. Air Pollutant,Air Pollutants, Environmental,Environmental Air Pollutants,Environmental Pollutants, Air,Air Environmental Pollutants,Pollutant, Air,Pollutants, Air,Pollutants, Air Environmental,Pollutants, Environmental Air
D000440 Butanols Isomeric forms and derivatives of butanol (C4H9OH). Alcohols, Butyl,Butanol,Butylhydroxides,Hydroxybutanes,Butyl Alcohols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
February 2018, Chemico-biological interactions,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
February 2017, Chemical research in toxicology,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
August 2013, Toxicology and applied pharmacology,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
January 1998, Journal of analytical toxicology,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
October 2013, Chemical research in toxicology,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
March 2007, Chemico-biological interactions,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
April 1996, Toxicology,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
January 2019, Journal of pharmaceutical and biomedical analysis,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
February 2018, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Wen-Jing Wu, and Wei-Feng Tang, and Ming-Hui Xiang, and Jianshe Yan, and Xiumei Cao, and Chang-Hui Zhou, and Yan Chang, and Jing Xi, and Yi-Yi Cao, and Yang Luan, and Xin-Yu Zhang
January 2006, Environmental and molecular mutagenesis,
Copied contents to your clipboard!