Structural and functional relationships of guanosine triphosphate binding proteins. 1988

T Pfeuffer, and E J Helmreich
Department of Physiological Chemistry, University of Würzburg, Federal Republic of Germany.

Information available at present documents the existence of three well-defined classes of guanine nucleotide binding proteins functioning as signal transducers: Gs and Gi which stimulate and inhibit adenylate cyclase, respectively, and transducin which transmits and amplifies the signal from light-activated rhodopsin to cGMP-dependent phosphodiesterase in ROS membranes. Go is a fourth member of this family. Its function is the least known among GTP binding signal transducing proteins. The family of G proteins has a number of properties in common. All are heterotrimers consisting of three subunits, alpha, beta, and gamma. Each of the subunits may be heterogeneous depending on species and tissue of origin and may be posttranslationally modified covalently. The alpha subunits vary in size from 39 to 52 kDa. The sequences for Gs alpha and transducin alpha have 42% overall homology and those of Gi alpha and Gs alpha 43%, whereas those of Gi alpha and transducin alpha have a higher degree (68%) of homology. All alpha subunits bind guanine nucleotides and are ADP-ribosylated by either pertussis toxin (Gi, transducin, Go) or cholera toxin (Gs, Gi, transducin). Thus, transducin and Gi, which have the highest degree of sequence homology, are also ADP-ribosylated by both toxins. The beta subunits have molecular weights of 36 and 35 kDa, respectively. While Gs, Gi, and Go contain a mixture of both, transducin contains only the larger (36-kDa) beta-polypeptide. The relationship of the 36- and the 35-kDa beta subunits is not defined. Although the complete sequence of the 36-kDa beta subunit of transducin has been deduced from the cDNA sequence, complete sequences of other beta subunits are not yet available so that detailed comparisons cannot be made at present. However, the proteolytic profiles of each class of the beta subunits of different G proteins are indistinguishable. The gamma subunit of bovine transducin has been completely sequenced. It has a Mr of 8400. Again complete sequences of other gamma subunits are not yet available. While the gamma subunits of Gs, Gi, and Go have identical electrophoretic mobility in SDS gels, they differ significantly in this respect from the gamma subunit of transducin. Moreover, crossover experiments point to functional differences between gamma subunits from G protein and transducin complexes. In addition, a role for beta, gamma in anchoring guanine nucleotide binding proteins to membranes has been postulated.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000067956 Adenylyl Cyclase Inhibitors Compounds that bind to and inhibit the action of ADENYLYL CYCLASES. Adenylate Cyclase Inhibitors,Cyclase Inhibitors, Adenylate,Cyclase Inhibitors, Adenylyl,Inhibitors, Adenylate Cyclase,Inhibitors, Adenylyl Cyclase
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015293 Transducin A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. G-Protein, Inhibitory Gt,Gt, Transducin G-Protein,alpha-Transducin,beta-Transducin,gamma-Transducin,Transducin G-Protein (Gt),Transducin, alpha Subunit,Transducin, beta Subunit,Transducin, gamma Subunit,G Protein, Inhibitory Gt,G-Protein Gt, Transducin,Gt G-Protein, Inhibitory,Gt, Transducin G Protein,Inhibitory Gt G-Protein,Transducin G-Protein Gt,alpha Subunit Transducin,alpha Transducin,beta Subunit Transducin,beta Transducin,gamma Subunit Transducin,gamma Transducin
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

T Pfeuffer, and E J Helmreich
July 1998, Biochimica et biophysica acta,
T Pfeuffer, and E J Helmreich
May 1994, The American journal of tropical medicine and hygiene,
T Pfeuffer, and E J Helmreich
January 1994, Methods in enzymology,
T Pfeuffer, and E J Helmreich
February 1992, Current opinion in cell biology,
T Pfeuffer, and E J Helmreich
January 1988, Journal of immunology (Baltimore, Md. : 1950),
T Pfeuffer, and E J Helmreich
August 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
T Pfeuffer, and E J Helmreich
January 1994, Methods in enzymology,
Copied contents to your clipboard!