Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. 1988

T Homyk, and C P Emerson
Department of Biology, University of Virginia, Charlottesville 22901.

Mutations in 13 genes affecting muscle development in Drosophila have been examined in pairwise combinations for evidence of genetic interactions. Heterozygous combinations of mutations in five genes, including the gene coding for myosin heavy chain, result in more severe phenotypes than respective single heterozygous mutant controls. The various mutant interactions include examples showing allele-specific intergenic interactions, gene specific interactions, and allele-specific intragenic complementations, suggesting that some interactions result from the manner in which mutant gene products associate. Interactions that result from alterations in "+" gene copy number were also uncovered, suggesting that normal myofibril development requires that the relative amounts of respective gene products produced be tightly regulated. The importance of the latter parameter is substantiated by the finding that all five interacting loci map to disperse haploinsufficient or haplolethal regions of the genome. The implications of the present findings are discussed in relation to pursuing the phenomena involving genetic interactions to identify new genes encoding interacting myofibrillar proteins, to examine the nature of intermolecular interactions in mutant and normal development and to decipher the quantitative and temporal regulation of a large family of functionally related gene products.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

T Homyk, and C P Emerson
January 1987, Somatic cell and molecular genetics,
T Homyk, and C P Emerson
September 1984, Evolution; international journal of organic evolution,
T Homyk, and C P Emerson
July 1985, The Journal of biological chemistry,
T Homyk, and C P Emerson
October 2005, Human brain mapping,
T Homyk, and C P Emerson
December 2005, Genetic epidemiology,
Copied contents to your clipboard!