Morphological Cell Types Projecting from V1 Layer 4B to V2 Thick and Thin Stripes. 2019

Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, Utah 84132.

In macaque visual cortex, different cytochrome oxidase stripes of area V2 receive segregated projections from layers (L)2/3 and 4B of the primary visual cortex (V1), and project to dorsal or ventral stream extrastriate areas. Parallel V1-to-V2 pathways suggest functionally specialized circuits, but it is unknown whether these circuits arise from distinct cell types. V1 L4B includes two morphological types of excitatory projection neurons: pyramids, which carry mixed magnocellular (M) and parvocellular (P) information to downstream areas, and spiny stellates, which carry only M information. Previous studies have shown that, overall, V2 receives ∼80% of its L4B inputs from pyramids, thus receiving mixed M and P signals. However, it is unknown how pyramids and stellates distribute their outputs to the different V2 stripes, and whether different stripes receive inputs from morphologically distinct neuron types. Using viral-mediated labeling of V2-projecting L4B neurons in male macaques, we show that thick stripes receive a greater contribution of L4B inputs from M-dominated spiny stellates compared with thin stripes. Both stripe types, however, receive a much larger contribution from spiny stellates than previously shown for V2 overall, indicating that a larger amount of M information than previously thought flows into both the dorsal and ventral streams via the V2 thick and thin stripes, respectively. Moreover, we identify four types of V2-projecting L4B cells differing in size and complexity. Three such cell types project to both thin and thick stripes, but one type, the giant spiny-stellate neuron, resembling L4B neurons projecting to motion-sensitive area MT, was only found to project to thick stripes.SIGNIFICANCE STATEMENT Area V1 partitions visual information into functionally specialized parallel pathways which terminate into distinct stripes of area V2. We asked whether V1 inputs to different V2 stripes arise from morphologically different cell types. V1 layer (L)4B has two cell types: pyramids, which carry both magnocellular (M) and parvocellular (P) visual signals, and spiny stellates, which carry only M signals. We find that V2 thick stripes, which project to areas processing object motion, receive a larger fraction of L4B input from M-dominated stellates compared with thin stripes, which project to areas processing object attributes. We also identify four morphological types of V2-projecting L4B neurons, suggestive of four functionally specialized cell types.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
January 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
May 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
November 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
April 2007, Cerebral cortex (New York, N.Y. : 1991),
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
December 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
January 1997, The Journal of comparative neurology,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
July 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
October 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
January 1992, Cerebral cortex (New York, N.Y. : 1991),
Jeff Yarch, and Hanna Larsen, and Marcus Chen, and Alessandra Angelucci
November 2009, Journal of neurophysiology,
Copied contents to your clipboard!