Visualization of Drosophila melanogaster chorion genes undergoing amplification. 1988

Y N Osheim, and O L Miller, and A L Beyer
Department of Microbiology, University of Virginia, Charlottesville 22908.

We visualized by electron microscopy the preferential amplification of Drosophila chorion genes in late-stage follicle cells. Chromatin spreads revealed large clusters of actively transcribed genes of the appropriate size, spacing, and orientation for chorion genes that were expressed with the correct temporal specificity. Occasionally the active genes were observed within or contiguous with intact replicons and replication forks. In every case, our micrographs are consistent with the hypothesis that the central region of each chorion domain contains a replication origin(s) used during the amplification event. In one case, a small replication bubble was observed precisely at the site of the essential region of the X chromosome amplification control element. The micrographs also suggest that forks at either end of a replicon frequently progress very different distances, presumably due to different times in initiation or different rates of movement. It appears that all chorion genes (even those coding for minor proteins) are transcribed in a "fully on" condition, albeit for varied durations, and that if replication fork passage does inactivate a promoter, it does so very transiently. Furthermore, a DNA segment containing one active gene is likely to have an additional active gene(s). Surprisingly, during the time frame of expected maximum activity, approximately half of the chorion sequences appear transcriptionally inactive.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002823 Chorion The outermost extra-embryonic membrane surrounding the developing embryo. In REPTILES and BIRDS, it adheres to the shell and allows exchange of gases between the egg and its environment. In MAMMALS, the chorion evolves into the fetal contribution of the PLACENTA. Chorions
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes

Related Publications

Y N Osheim, and O L Miller, and A L Beyer
February 1980, Proceedings of the National Academy of Sciences of the United States of America,
Y N Osheim, and O L Miller, and A L Beyer
January 1985, Oxford surveys on eukaryotic genes,
Y N Osheim, and O L Miller, and A L Beyer
April 1980, Cell,
Y N Osheim, and O L Miller, and A L Beyer
January 1986, Developmental genetics,
Y N Osheim, and O L Miller, and A L Beyer
January 1991, Electron microscopy reviews,
Y N Osheim, and O L Miller, and A L Beyer
January 1985, Chromosoma,
Y N Osheim, and O L Miller, and A L Beyer
May 1992, Molecular and cellular biology,
Y N Osheim, and O L Miller, and A L Beyer
December 1989, The EMBO journal,
Y N Osheim, and O L Miller, and A L Beyer
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!