| D009046 |
Motor Neurons |
Neurons which activate MUSCLE CELLS. |
Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor |
|
| D009134 |
Muscular Atrophy, Spinal |
A group of disorders marked by progressive degeneration of motor neurons in the spinal cord resulting in weakness and muscular atrophy, usually without evidence of injury to the corticospinal tracts. Diseases in this category include Werdnig-Hoffmann disease and later onset SPINAL MUSCULAR ATROPHIES OF CHILDHOOD, most of which are hereditary. (Adams et al., Principles of Neurology, 6th ed, p1089) |
Bulbospinal Neuronopathy,Oculopharyngeal Spinal Muscular Atrophy,Progressive Muscular Atrophy,Scapuloperoneal Form of Spinal Muscular Atrophy,Spinal Muscular Atrophy,Adult Spinal Muscular Atrophy,Adult-Onset Spinal Muscular Atrophy,Amyotrophy, Neurogenic Scapuloperoneal, New England Type,Distal Spinal Muscular Atrophy,Hereditary Motor Neuronopathy,Muscular Atrophy, Adult Spinal,Myelopathic Muscular Atrophy,Myelopathic Muscular Atrophy, Progressive,Progressive Myelopathic Muscular Atrophy,Progressive Proximal Myelopathic Muscular Atrophy,Proximal Myelopathic Muscular Atrophy, Progressive,Scapuloperoneal Spinal Muscular Atrophy,Spinal Amyotrophy,Spinal Muscular Atrophy, Distal,Spinal Muscular Atrophy, Oculopharyngeal,Spinal Muscular Atrophy, Scapuloperoneal,Spinal Muscular Atrophy, Scapuloperoneal Form,Adult Onset Spinal Muscular Atrophy,Amyotrophies, Spinal,Amyotrophy, Spinal,Atrophies, Progressive Muscular,Atrophy, Myelopathic Muscular,Atrophy, Progressive Muscular,Atrophy, Spinal Muscular,Bulbospinal Neuronopathies,Hereditary Motor Neuronopathies,Motor Neuronopathies, Hereditary,Motor Neuronopathy, Hereditary,Muscular Atrophies, Progressive,Muscular Atrophy, Myelopathic,Muscular Atrophy, Progressive,Neuronopathies, Bulbospinal,Neuronopathies, Hereditary Motor,Neuronopathy, Bulbospinal,Neuronopathy, Hereditary Motor,Progressive Muscular Atrophies,Spinal Amyotrophies |
|
| D004195 |
Disease Models, Animal |
Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. |
Animal Disease Model,Animal Disease Models,Disease Model, Animal |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D055533 |
Survival of Motor Neuron 1 Protein |
An SMN complex protein that contains a TUDOR DOMAIN and is essential for the function of the SMN protein complex. In humans, the protein is encoded by a single gene found near the inversion TELOMERE of a large inverted region of CHROMOSOME 5. Mutations in the gene coding for survival of motor neuron 1 protein may result in SPINAL MUSCULAR ATROPHIES OF CHILDHOOD. |
SMN Protein (Spinal Muscular Atrophy),Survival Motor Neuron Protein 1,Survival of Motor Neuron 1, Telomeric Protein |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|
| D018482 |
Muscle, Skeletal |
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. |
Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles |
|