Assessment of transport capacity of plasmalemmal Ca2+ pump in smooth muscle. 1988

P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
Department of Physiology, University of Massachusetts Medical School, Worcester 01655.

In resting smooth muscle, a variety of Ca2+ extrusion processes offset the inward Ca2+ leak. Biochemical studies suggest that the plasmalemmal Ca2+ pump dominates this process; however, this contention could not be proven without a reliable estimate of the inward Ca2+ leak that must be opposed by active transport. Recent studies using dispersed cells from the toad stomach provided such an estimate; thus we examined the capacity of the plasmalemmal Ca2+ pump in this tissue. Membranes were prepared using nitrogen cavitation, high-salt extraction, and flotation on discontinuous sucrose gradients. These membrane vesicles were enriched 16- to 24-fold for plasma membrane markers and exhibited an ATP-dependent uptake of 45Ca that was insensitive to azide or oxalate but sensitive to orthovanadate inhibition and calmodulin stimulation. 45Ca accumulated in the presence of ATP was rapidly released by Ca2+ ionophore but not by caffeine, inositol 1,4,5-trisphosphate, or GTP. Uptake exhibited a high affinity for Ca2+ (Km 0.2 microM) and a high-transport capacity, producing greater than 12,000-fold gradient for Ca2+ and a transmembrane flux rate greater than that observed in resting smooth muscle cells. Thus this enzyme is capable of maintaining steady-state Ca2+ levels in smooth muscle.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
January 1986, Blood vessels,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
June 2006, The Journal of general physiology,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
November 1988, The Biochemical journal,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
January 1989, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
October 1993, The American journal of physiology,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
July 1985, Experientia,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
August 1992, The American journal of physiology,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
March 2011, Journal of cellular and molecular medicine,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
February 1988, Circulation research,
P A Lucchesi, and R A Cooney, and C Mangsen-Baker, and T W Honeyman, and C R Scheid
October 1983, Cell calcium,
Copied contents to your clipboard!