Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. 1988

M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
Department of Human Nutrition, London School of Hygiene and Tropical Medicine, United Kingdom.

Muscle glutamine concentration ([GLN]) and protein synthesis rate (Ks) have been examined in vivo in well-fed, protein-deficient, starved, and endotoxemic rats. With protein deficiency (8 or 5% casein diet), [GLN] fell from 7.70 to 5.58 and 3.56 mmol/kg in the 8 and 5% diet groups, with Ks falling from 15.42 to 9.1 and 6.84%/day. Three-day starvation reduced [GLN] and Ks to 2.38 mmol/kg and 5.6%/day, respectively. In all these groups food intakes and insulin were generally well maintained (except in the starved group), whereas free 3,5,3'-triiodothyronine (T3) was depressed in the starved and 5% protein group. The E. coli lipopolysaccharide endotoxin (3 mg/kg) reduced [GLN] to 5.85 and 4.72 mmol/kg and Ks to 10.5 and 9.10%/day in two well-fed groups. Insulin levels were increased, and free T3 levels fell. Combined protein deficiency and endotoxemia further reduced [GLN] and Ks to 1.88 mmol/kg and 4.01%/day, respectively, in the 5% protein rats. Changes in both ribosomal activity (KRNA) and concentration (RNA/protein) contributed to the fall in Ks in malnutrition and endotoxemia, although reductions in the RNA concentration were most marked with protein deficiency and reductions in the KRNA dominated the response to the endotoxin. The changes in [GLN] and Ks were highly correlated as were [GLN] and both KRNA and the RNA concentration, and these relationships were unique to glutamine. These relationships could reflect sensitivity of glutamine transport and protein synthesis to the same regulatory influences, and the particular roles of insulin and T3 are discussed, as well as any direct influence of glutamine on protein synthesis.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011502 Protein-Energy Malnutrition The lack of sufficient energy or protein to meet the body's metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor quality dietary protein, increased demands due to disease, or increased nutrient losses. Marasmus,Protein-Calorie Malnutrition,Malnutrition, Protein-Calorie,Malnutrition, Protein-Energy,Malnutritions, Protein-Energy,Protein Calorie Malnutrition,Protein Energy Malnutrition
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D004731 Endotoxins Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells. Endotoxin

Related Publications

M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
May 1987, FEBS letters,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
August 1989, Metabolism: clinical and experimental,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
May 2021, The Journal of experimental biology,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
January 1973, Nature,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
January 1991, JPEN. Journal of parenteral and enteral nutrition,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
December 1993, The American journal of physiology,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
September 1988, FEBS letters,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
April 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
January 1992, JPEN. Journal of parenteral and enteral nutrition,
M M Jepson, and P C Bates, and P Broadbent, and J M Pell, and D J Millward
January 1991, Surgery,
Copied contents to your clipboard!