A general coupled spectrophotometric assay for decarboxylases. 1988

D H Burns, and D J Aberhart
Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

A rapid, continuous spectrophotometric method has been developed for the assay of decarboxylases. The assay uses a coupled enzyme system in which liberated CO2 is reacted with phosphoenolpyruvate and phosphoenolpyruvate carboxylase to form oxaloacetate, which in turn is reduced by malate dehydrogenase to L-malate concomitantly with the oxidation of NADH to NAD. The resultant decrease in absorbance at 340 nm accurately reflects the activity of the decarboxylase. The method is capable of detecting the liberation of as little as 1 nmol of CO2/min and was tested in assays of lysine decarboxylase, orotidine-5'-phosphate decarboxylase, and 4'-phosphopantothenoyl-L-cysteine decarboxylase.

UI MeSH Term Description Entries
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010453 Peptide Synthases Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups. Peptide Synthetases,Acid-Amino-Acid Ligases,Acid Amino Acid Ligases,Ligases, Acid-Amino-Acid,Synthases, Peptide,Synthetases, Peptide
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003653 Decarboxylation The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound. Decarboxylations
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

D H Burns, and D J Aberhart
May 1988, Analytical biochemistry,
D H Burns, and D J Aberhart
March 1974, Analytical biochemistry,
D H Burns, and D J Aberhart
December 1981, Clinical chemistry,
D H Burns, and D J Aberhart
January 2012, Molecular biology reports,
D H Burns, and D J Aberhart
February 1983, Analytical biochemistry,
D H Burns, and D J Aberhart
January 1981, The Italian journal of biochemistry,
D H Burns, and D J Aberhart
August 1989, Analytical biochemistry,
D H Burns, and D J Aberhart
January 1997, Analytical biochemistry,
Copied contents to your clipboard!