Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings. 2019

Ryan G L Koh, and Adrian I Nachman, and José Zariffa
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada.

Peripheral neural signals have the potential to provide the necessary motor, sensory or autonomic information for robust control in many neuroprosthetic and neuromodulation applications. However, developing methods to recover information encoded in these signals is a significant challenge. We introduce the idea of using spatiotemporal signatures extracted from multi-contact nerve cuff electrode recordings to classify naturally evoked compound action potentials (CAP). 9 Long-Evan rats were implanted with a 56-channel nerve cuff on the sciatic nerve. Afferent activity was selectively evoked in the different fascicles of the sciatic nerve (tibial, peroneal, sural) using mechano-sensory stimuli. Spatiotemporal signatures of recorded CAPs were used to train three different classifiers. Performance was measured based on the classification accuracy, F1-score, and the ability to reconstruct original firing rates of neural pathways. The mean classification accuracies, for a 3-class problem, for the best performing classifier was 0.686 ± 0.126 and corresponding mean F1-score was 0.605 ± 0.212. The mean Pearson correlation coefficients between the original firing rates and estimated firing rates found for the best classifier was 0.728 ± 0.276. The proposed method demonstrates the possibility of classifying individual naturally evoked CAPs in peripheral neural signals recorded from extraneural electrodes, allowing for more precise control signals in neuroprosthetic applications.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017933 Peripheral Nervous System The nervous system outside of the brain and spinal cord. The peripheral nervous system has autonomic and somatic divisions. The autonomic nervous system includes the enteric, parasympathetic, and sympathetic subdivisions. The somatic nervous system includes the cranial and spinal nerves and their ganglia and the peripheral sensory receptors. Nervous System, Peripheral,Nervous Systems, Peripheral,Peripheral Nervous Systems,System, Peripheral Nervous,Systems, Peripheral Nervous
D020318 Rats, Long-Evans An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively. Long-Evans Rat,Long Evans Rats,Evans Rats, Long,Long Evans Rat,Long-Evans Rats,Rat, Long-Evans,Rats, Long Evans

Related Publications

Ryan G L Koh, and Adrian I Nachman, and José Zariffa
July 2019, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
January 1983, Archiv fur Psychiatrie und Nervenkrankheiten,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
January 1981, Zeitschrift fur Rechtsmedizin. Journal of legal medicine,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
July 2023, Neuromodulation : journal of the International Neuromodulation Society,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
March 1953, Journal of neurophysiology,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
January 1982, Acta chirurgica Scandinavica. Supplementum,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
January 2002, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
February 1970, Military medicine,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
January 2015, Journal of neuroscience methods,
Ryan G L Koh, and Adrian I Nachman, and José Zariffa
March 1981, Brain research,
Copied contents to your clipboard!